原文:強化學習 - Q-learning Sarsa 和 DQN 的理解

本文用於基本入門理解。 強化學習的基本理論 : R, S, A 這些就不說了。先設想兩個場景: 一。 個 x 的 格子圖, 里面有一個目標點, 個死亡點二。 一個迷宮, 一個出發點, 處 分叉點, 個死角, 條活路Q learning 的概念 其實就是一個算法, 數學的,或者軟件程序的算法而已。 對於這種 死的 固定的游戲 , 我個人覺得其實就是個窮舉算法而已。Q learning 步驟:場景一: ...

2017-10-30 11:32 1 4237 推薦指數:

查看詳情

強化學習 5 —— SARSAQ-Learning算法代碼實現

上篇文章 強化學習——時序差分 (TD) --- SARSA and Q-Learning 我們介紹了時序差分TD算法解決強化學習的評估和控制問題,TD對比MC有很多優勢,比如TD有更低方差,可以學習不完整的序列。所以我們可以在策略控制循環中使用TD來代替MC。優於TD算法的諸多優點,因此現在主流 ...

Mon Aug 10 23:34:00 CST 2020 1 914
Deep Learning專欄--強化學習Q-LearningDQN(2)

在上一篇文章中介紹了MDP與Bellman方程,MDP可以對強化學習的問題進行建模,Bellman提供了計算價值函數的迭代公式。但在實際問題中,我們往往無法准確獲知MDP過程中的轉移概率$P$,因此無法直接將解決 MDP 問題的經典思路 value iteration 和 policy ...

Fri Mar 29 23:00:00 CST 2019 0 660
強化學習(九)Deep Q-Learning進階之Nature DQN

    在強化學習(八)價值函數的近似表示與Deep Q-Learning中,我們講到了Deep Q-Learning(NIPS 2013)的算法和代碼,在這個算法基礎上,有很多Deep Q-Learning(以下簡稱DQN)的改進版,今天我們來討論DQN的第一個改進版Nature DQN ...

Tue Oct 09 04:40:00 CST 2018 28 22657
強化學習 7——Deep Q-LearningDQN)公式推導

上篇文章強化學習——狀態價值函數逼近介紹了價值函數逼近(Value Function Approximation,VFA)的理論,本篇文章介紹大名鼎鼎的DQN算法。DQN算法是 DeepMind 團隊在2015年提出的算法,對於強化學習訓練苦難問題,其開創性的提出了兩個解決辦法,在atari游戲 ...

Mon Sep 07 04:56:00 CST 2020 0 1999
強化學習中的無模型 基於值函數的 Q-LearningSarsa 學習

強化學習基礎: 注: 在強化學習中 獎勵函數和狀態轉移函數都是未知的,之所以有已知模型的強化學習解法是指使用采樣估計的方式估計出獎勵函數和狀態轉移函數,然后將強化學習問題轉換為可以使用動態規划求解的已知模型問題。 強化學習問題由於采用了MDP ...

Thu Mar 07 06:11:00 CST 2019 0 1310
強化學習(Reinforcement Learning)中的Q-LearningDQN,面試看這篇就夠了!

1. 什么是強化學習 其他許多機器學習算法中學習器都是學得怎樣做,而強化學習(Reinforcement Learning, RL)是在嘗試的過程中學習到在特定的情境下選擇哪種行動可以得到最大的回報。在很多場景中,當前的行動不僅會影響當前的rewards,還會影響之后的狀態和一系列 ...

Mon Aug 19 01:44:00 CST 2019 0 2731
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM