本節使用的算法稱為ID3,另一個決策樹構造算法CART以后講解。 一、概述 我們經常使用決策樹處理分類問題,它的過程類似二十個問題的游戲:參與游戲的一方在腦海里想某個事物,其他參與者向他提出問題,只允許提20個問 題,問題的答案也只能用對或錯回答。問問題的人通過推斷分解,逐步縮小 ...
下表為是否適合打壘球的決策表,預測E 天氣 晴,溫度 適中,濕度 正常,風速 弱 的場合,是否合適中打壘球。 天氣 溫度 濕度 風速 活動 晴 炎熱 高 弱 取消 晴 炎熱 高 強 取消 陰 炎熱 高 弱 進行 雨 適中 高 弱 進行 雨 寒冷 正常 弱 進行 雨 寒冷 正常 強 取消 陰 寒冷 正常 強 進行 晴 適中 高 弱 取消 晴 寒冷 正常 弱 進行 雨 適中 正常 弱 進行 晴 適中 ...
2017-10-28 09:49 0 8023 推薦指數:
本節使用的算法稱為ID3,另一個決策樹構造算法CART以后講解。 一、概述 我們經常使用決策樹處理分類問題,它的過程類似二十個問題的游戲:參與游戲的一方在腦海里想某個事物,其他參與者向他提出問題,只允許提20個問 題,問題的答案也只能用對或錯回答。問問題的人通過推斷分解,逐步縮小 ...
上一篇介紹了決策樹之分類樹構造的幾種方法,本文主要介紹使用CART算法構建回歸樹及剪枝算法實現。主要包括以下內容: 1、CART回歸樹的介紹 2、二元切分的實現 3、總方差法划分特征 4、回歸樹的構建 5、回歸樹的測試與應用 6、剪枝算法 一、CART回歸樹的介紹 回歸樹與分類樹 ...
)。 本文根據最近學習機器學習書籍 網絡文章的情況,特將一些學習思路做了歸納整理,詳情如下.如有不當之處,請各 ...
ID3算法 ID3 提出了初步的決策樹算法;C4.5 提出了完整的決策樹算法;CART (Classification And Regression Tree) 目前使用最多的決策樹算法; 1、ID3 算法 ID3 算法是決策樹的經典構造算法,內部使用信息熵和信息增益來進行構建 ...
CART分類樹算法 特征選擇 我們知道,在ID3算法中我們使用了信息增益來選擇特征,信息增益大的優先選擇。在C4.5算法中,采用了信息增益比來選擇特征,以減少信息增益容易選擇特征值多的特征的問題。但是無論是ID3還是C4.5,都是基於信息論的熵模型的,這里面會涉及大量的對數運算。能不能簡化 ...
注:本系列所有博客將持續更新並發布在github和gitee上,您可以通過github、gitee下載本系列所有文章筆記文件。 1 引言 上一篇博客中介紹了ID3和C4.5兩種決策樹算法,這兩種決策樹都只能用於分類問題,而本文要說的CART(classification ...
一、背景及問題 決策樹算法是為了解決二分類問題出現的,是根據歷史經驗(或訓練集)來做判斷,生成決策結果(或樹狀圖)的過程。 /*請尊重作者勞動成果,轉載請標明原文鏈接:*/ /* https://www.cnblogs.com/jpcflyer/p/11037256.html ...
1、決策樹算法 決策樹用樹形結構對樣本的屬性進行分類,是最直觀的分類算法,而且也可以用於回歸。不過對於一些特殊的邏輯分類會有困難。典型的如異或(XOR)邏輯,決策樹並不擅長解決此類問題。 決策樹的構建不是唯一的,遺憾的是最優決策樹的構建屬於NP問題。因此如何構建一棵好的決策樹是研究的重點 ...