原文:L1正則化及其推導

L 正則化及其推導 在機器學習的Loss函數中,通常會添加一些正則化 正則化與一些貝葉斯先驗本質上是一致的,比如 L 正則化與高斯先驗是一致的 L 正則化與拉普拉斯先驗是一致的等等,在這里就不展開討論 來降低模型的結構風險,這樣可以使降低模型復雜度 防止參數過大等。大部分的課本和博客都是直接給出了 L 正則化的解釋解或者幾何說明來得到 L 正則化會使參數稀疏化,本來會給出詳細的推導。 L 正則化 ...

2017-09-23 21:14 12 11693 推薦指數:

查看詳情

L1正則化L2正則化

  L1L2正則都是比較常見和常用的正則化項,都可以達到防止過擬合的效果。L1正則化的解具有稀疏性,可用於特征選擇。L2正則化的解都比較小,抗擾動能力強。 L2正則化   對模型參數的L2正則項為      即權重向量中各個元素的平方和,通常取1/2。L2正則也經常被稱作“權重衰減 ...

Fri Sep 29 01:58:00 CST 2017 0 9067
L1正則化與稀疏性

2020-04-21 22:32:57 問題描述:L1正則化使得模型參數具有稀疏性的原理是什么。 問題求解: 稀疏矩陣指有很多元素為0,少數參數為非零值。一般而言,只有少部分特征對模型有貢獻,大部分特征對模型沒有貢獻或者貢獻很小,稀疏參數的引入,使得一些特征對應的參數是0,所以就可以剔除 ...

Wed Apr 22 06:41:00 CST 2020 0 812
正則化L1L2正則

稀疏性表示數據中心0占比比較大 引西瓜書中P252原文: 對於損失函數后面加入懲罰函數可以降低過擬合的風險,懲罰函數使用L2范數,則稱為嶺回歸,L2范數相當與給w加入先驗,需要要求w滿足某一分布,L2范數表示數據服從高斯分布,而L1范數表示數據服從拉普拉斯分布。從拉普拉斯函數和高斯 ...

Thu Sep 05 19:44:00 CST 2019 0 446
L0、L1L2范數正則化

一、范數的概念 向量范數是定義了向量的類似於長度的性質,滿足正定,齊次,三角不等式的關系就稱作范數。 一般分為L0、L1L2與L_infinity范數。 二、范數正則化背景 1. 監督機器學習問題無非就是“minimizeyour error while ...

Thu Oct 31 23:47:00 CST 2019 0 440
L1L2:損失函數和正則化

作為損失函數 L1范數損失函數   L1范數損失函數,也被稱之為平均絕對值誤差(MAE)。總的來說,它把目標值$Y_i$與估計值$f(x_i)$的絕對差值的總和最小。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范數損失函數 ...

Wed Jan 29 23:16:00 CST 2020 0 744
L1范數與L2范數正則化

2018-1-26 雖然我們不斷追求更好的模型泛化力,但是因為未知數據無法預測,所以又期望模型可以充分利用訓練數據,避免欠擬合。這就要求在增加模型復雜度、提高在可觀測數據上的性能表現得同時,又需要兼顧模型的泛化力,防止發生過擬合的情況。為了平衡這兩難的選擇,通常采用兩種模型正則化的方法:L1范數 ...

Fri Aug 03 19:53:00 CST 2018 0 798
正則化--L1正則化(稀疏性正則化

稀疏矢量通常包含許多維度。創建特征組合會導致包含更多維度。由於使用此類高維度特征矢量,因此模型可能會非常龐大,並且需要大量的 RAM。 在高維度稀疏矢量中,最好盡可能使權重正好降至 ...

Sun Mar 25 18:59:00 CST 2018 0 2137
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM