原文:L1正則化比L2正則化更易獲得稀疏解的原因

我們知道L 正則化和L 正則化都可以用於降低過擬合的風險,但是L 正則化還會帶來一個額外的好處:它比L 正則化更容易獲得稀疏解,也就是說它求得的w權重向量具有更少的非零分量。 為了理解這一點我們看一個直觀的例子:假定x有兩個屬性,於是無論是采用L 正則化還是采用L 正則化,它們解出的w權重向量都具有兩個分量,即w ,w 我們將其作為兩個坐標軸,然后在這個二維空間中繪制 平方誤差取值相同的連線,再 ...

2017-09-16 09:45 0 3881 推薦指數:

查看詳情

L1正則化L2正則化

  L1L2正則都是比較常見和常用的正則化項,都可以達到防止過擬合的效果。L1正則化的解具有稀疏性,可用於特征選擇。L2正則化的解都比較小,抗擾動能力強。 L2正則化   對模型參數的L2正則項為      即權重向量中各個元素的平方和,通常取1/2。L2正則也經常被稱作“權重衰減 ...

Fri Sep 29 01:58:00 CST 2017 0 9067
機器學習筆記-L2正則化L1正則化稀疏

L2正則化L1正則化稀疏性 [抄書] 《百面機器學習:算法工程師帶你去面試》 為什么希望模型參數具有稀疏性呢?稀疏性,說白了就是模型的很多參數是0。這相當於對模型進行了一次特征選擇,只留下一些比較重要的特征,提高模型的泛化能力,降低過擬合的可能。在實際應用中,機器學習模型的輸入 ...

Tue Jun 02 00:15:00 CST 2020 0 705
L1正則化稀疏

2020-04-21 22:32:57 問題描述:L1正則化使得模型參數具有稀疏性的原理是什么。 問題求解: 稀疏矩陣指有很多元素為0,少數參數為非零值。一般而言,只有少部分特征對模型有貢獻,大部分特征對模型沒有貢獻或者貢獻很小,稀疏參數的引入,使得一些特征對應的參數是0,所以就可以剔除 ...

Wed Apr 22 06:41:00 CST 2020 0 812
L0、L1L2范數正則化

一、范數的概念 向量范數是定義了向量的類似於長度的性質,滿足正定,齊次,三角不等式的關系就稱作范數。 一般分為L0、L1L2L_infinity范數。 二、范數正則化背景 1. 監督機器學習問題無非就是“minimizeyour error while ...

Thu Oct 31 23:47:00 CST 2019 0 440
正則化L1L2正則

稀疏性表示數據中心0占比比較大 引西瓜書中P252原文: 對於損失函數后面加入懲罰函數可以降低過擬合的風險,懲罰函數使用L2范數,則稱為嶺回歸,L2范數相當與給w加入先驗,需要要求w滿足某一分布,L2范數表示數據服從高斯分布,而L1范數表示數據服從拉普拉斯分布。從拉普拉斯函數和高斯 ...

Thu Sep 05 19:44:00 CST 2019 0 446
L1L2:損失函數和正則化

作為損失函數 L1范數損失函數   L1范數損失函數,也被稱之為平均絕對值誤差(MAE)。總的來說,它把目標值$Y_i$與估計值$f(x_i)$的絕對差值的總和最小。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范數損失函數 ...

Wed Jan 29 23:16:00 CST 2020 0 744
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM