涉及: 使用交叉驗證對模型進行評估 使用網格搜索尋找模型的最優參數 對分類模型的可信度進行評估 使用交叉驗證進行模型評估 以前的內容,經常涉及使用sklear中的train_test_split 將數據集拆分成訓練集和測試集,然后用訓練集訓練模型,再用模型去擬合測試集 ...
當我們運用訓練好了的模型來預測未知數據時候發現有較大誤差,那么我們下一步可以做什么呢 一般來說可以選擇以下幾種方法: 增加訓練集 通常是有效的,但是代價太大 減少特征的數量 獲取更多的特征 增加多項式特征 減小正則化參數lambda 增大正則化參數lambda 但是要選擇什么方法來改進我們的算法,我們需要運用一些機器學習診斷法來協助我們判斷。 一 評估h x Evaluating a Hypot ...
2017-09-13 17:42 0 3922 推薦指數:
涉及: 使用交叉驗證對模型進行評估 使用網格搜索尋找模型的最優參數 對分類模型的可信度進行評估 使用交叉驗證進行模型評估 以前的內容,經常涉及使用sklear中的train_test_split 將數據集拆分成訓練集和測試集,然后用訓練集訓練模型,再用模型去擬合測試集 ...
1.matplotlib 首先看一下這個靜態圖繪制模塊 靜態圖形處理 數據分析三劍客 Numpy : 主要為了給pandas提供數據源 pandas : 更 ...
1.生成模型與判別模型區別 生成模型:學習得到聯合概率分布P(x,y),即特征x和標記y共同出現的概率,然后求條件概率分布。能夠學習到數據生成的機制。 判別模型:學習得到條件概率分布P(y|x),即在特征x出現的情況下標記y出現的概率。 數據要求:生成模型需要的數據量比較大,能夠較好地估計 ...
1、參考資料: 博客園 - 劉建平隨筆:https://www.cnblogs.com/pinard/p/6945257.html 嗶站up主 - 白手起家的百萬富翁:https://www.bi ...
二、機器學習模型評估 2.1 模型評估:基本概念 錯誤率(Error Rate) 預測錯誤的樣本數a占樣本總數的比例m \[E=\frac{a}{m} \] 准確率(Accuracy) 准確率=1-錯誤率准確率=1−錯誤率 誤差 ...
'沒有測量,就沒有科學'這是科學家門捷列夫的名言。在計算機科學特別是機器學習領域中,對模型的評估同樣至關重要,只有選擇與問題相匹配的評估方法,才能快速地發現模型選擇或訓練過程中出現的問題,迭代地對模型進行優化。模型評估主要分為離線評估和在線評估兩個階段。針對分類、排序、回歸、序列預測等不同類 ...
朴素貝葉斯(分類) 目錄 朴素貝葉斯(分類) 決策樹(分類) 算法核心 信息熵 信息量化 熵 信息 ...
更新來逐步進行的參數 優化方法,最終結果為局部最優; 廣義的最小二乘准則,是一種對於偏差程 ...