一、深層神經網絡 深層神經網絡的符號與淺層的不同,記錄如下: 用\(L\)表示層數,該神經網絡\(L=4\) \(n^{[l]}\)表示第\(l\)層的神經元的數量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...
介紹 DeepLearning課程總共五大章節,該系列筆記將按照課程安排進行記錄。 另外第一章的前兩周的課程在之前的Andrew Ng機器學習課程筆記 博客園 amp Andrew Ng機器學習課程筆記 CSDN 系列筆記中都有提到,所以這里不再贅述。 神經網絡概要 注意:這一系列的課程中用中括號表示層數,例如 a 表示第二層 隱藏層 的數據。 神經網絡表示 這個圖的內容有點多,跟着下面的步驟來 ...
2017-08-30 16:09 0 6691 推薦指數:
一、深層神經網絡 深層神經網絡的符號與淺層的不同,記錄如下: 用\(L\)表示層數,該神經網絡\(L=4\) \(n^{[l]}\)表示第\(l\)層的神經元的數量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...
一、目標定位 這一小節視頻主要介紹了我們在實現目標定位時標簽該如何定義。 上圖左下角給出了損失函數的計算公式(這里使用的是平方差) 如圖示,加入我們需要定位出圖像中是否有pedes ...
以下為在Coursera上吳恩達老師的DeepLearning.ai課程項目中,第一部分《神經網絡和深度學習》第二周課程部分關鍵點的筆記。筆記並不包含全部小視頻課程的記錄,如需學習筆記中舍棄的內容請至 Coursera 或者 網易雲課堂。同時在閱讀以下筆記之前,強烈建議先學習吳恩達老師的視頻課程 ...
一、為什么要進行實例探究? 通過他人的實例可以更好的理解如何構建卷積神經網絡,本周課程主要會介紹如下網絡 LeNet-5 AlexNet VGG ResNet (有152層) Inception 二、經典網絡 1.LeNet-5 該網絡主要針對灰度圖像訓練 ...
1 神經網絡概覽( Neural Networks Overview ) 先來快速過一遍如何實現神經網絡。 首先需要輸入特征x,參數w和b,計算出z,然后用激活函數計算出a,在神經網絡中我們要做多次這樣的計算,反復計算z和a,然后用損失函數計算最后的a和y的差異。 可以把很多sigmoid ...
一、計算機視覺 如圖示,之前課程中介紹的都是64* 64 *3的圖像,而一旦圖像質量增加,例如變成1000 * 1000 * 3的時候那么此時的神經網絡的計算量會巨大,顯然這不現實。所以需要引入其他的方法來解決這個問題。 二、邊緣檢測示例 邊緣檢測可以是垂直邊緣檢測,也可以是水平邊緣檢測 ...
一、調試處理 week2中提到有如下的超參數: α hidden units mini-batch size β layers learning rate decay \(β_1,β_2,ε\) 顏色表示重要性,以及調試過程中可能會需要修改的程度 ...
作者:szx_spark 1. 經典網絡 LeNet-5 AlexNet VGG Ng介紹了上述三個在計算機視覺中的經典網絡。網絡深度逐漸增加,訓練的參數數量也驟增。AlexNet大約6000萬參數,VGG大約上億參數。 從中我們可以學習 ...