原文:R中,數據標准化方法

標准化方法 Normalization Method 數據的標准化是將數據按比例縮放,使之落入一個小的特定區間。由於指標體系的各個指標度量單位是不同的,為了能夠將指標參與評價計算,需要對指標進行規范化處理,通過函數變換將其數值映射到某個數值區間。一般常用的有以下幾種方法。 最小 最大規范化對原始數據進行線性變換。假定MaxA與MinA分別表示屬性A的最大與最小值。最小最大規范化通過計算將屬性A的值 ...

2017-08-14 20:13 0 1640 推薦指數:

查看詳情

數據標准化方法與意義

含義 數據標准化和歸一存在區別 數據歸一數據標准化的一種典型做法,即將數據統一映射到[0,1]區間上. 數據標准化是指將數據按照比例縮放,使之落入一個特定的區間. 意義 求解需要 比如在SVM處理分類問題是又是需要進行數據的歸一化處理,不然會對准確率產生很大的影響,具體 ...

Sun Jul 02 00:29:00 CST 2017 0 2166
常用的數據標准化方法

處理數據時經常會遇到比較兩個不同數據集的情況(比如比較具有不同教育水平地區學生的成績,比較不同網頁的受歡迎程度),這時就需要先將數據標准化,再進行比較。 數據標准化(normalization)是將數據按比例縮放,使之落入一個小的特定區間。在某些比較和評價的指標處理中經常會用到,去除數據的單位 ...

Mon Nov 05 07:14:00 CST 2012 0 5582
常用的數據標准化方法

統計指標是數據分析的基本元素,變量之間的對比分析和綜合分析是最基本、最常用的統計分析方法。當統計指標的量綱不同或性質不同時,如果直接用原始數據進行數據分析,往往會得到不合理的結論。 為什么要進行數據標准化 對單個指標進行比較,假設對3名新生嬰兒體重(5,6,7)和3名成年人的體重 ...

Thu Oct 03 15:57:00 CST 2013 0 6932
數據標准化

常見的數據標准化方法有以下6種: 1、Min-Max標准化 Min-Max標准化是指對原始數據進行線性變換,將值映射到[0,1]之間 2、Z-Score標准化 Z-Score(也叫Standard Score,標准分數)標准化是指:基於原始數據的均值(mean)和標准差(standard ...

Mon Sep 21 01:07:00 CST 2020 0 542
三、標准化數據

影響最簡單的方法。離差標准化的特點: (1)數據的整體分布情況並不會隨離差標准化而發生改 ...

Fri May 28 23:23:00 CST 2021 0 1013
數據標准化

1 為何需要標准化 有的數據,不同維度的數量級差別較大,導致有的維度會主導整個分析過程。如下圖所示: 該圖的數據維度\(d=30\),樣本量\(n=40\),上面的圖是對原始數據做PCA后,第一個PC在各個維度上的權重的平行坐標圖,下面的圖則是對數據標准化之后的情況。可以發現,在原始數據 ...

Tue May 18 03:35:00 CST 2021 0 279
R實戰 第九篇:數據標准化

數據標准化處理是數據分析的一項基礎工作,不同評價指標往往具有不同的量綱,數據之間的差別可能很大,不進行處理會影響到數據分析的結果。為了消除指標之間的量綱和取值范圍差異對數據分析結果的影響,需要對數據進行標准化處理,就是說,把數據按照比例進行縮放,使之落入一個特定的區域,便於進行綜合分析。 在繼續 ...

Fri Aug 10 01:02:00 CST 2018 0 14065
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM