在我還會FFT的時候趕快寫下一篇博客留着以后看。。。。。。 FFT是用來求解多項式乘法,那么首先我們要知道多項式是啥。 \[A(x) = a_0+a_1x^1+a_2x^2+···+a_{n-1}x^{n-1} \] 這是個n-1次多項式(最高項是\(x^{n-1}\)),\(a_0 ...
WARNING 這篇博文內容相對偏少, 已經在后續博文中擴充. 大家可以看我的最新博文 學習筆記 amp 教程 信號, 集合, 多項式, 以及各種卷積性變換 FFT,NTT,FWT,FMT 引入 可能有不少OIer都知道FFT這個神奇的算法, 通過一系列玄學的變化就可以在 O nlog n 的總時間復雜度內計算出兩個向量的卷積 或者多項式乘法 高精度乘法 , 而代碼量卻非常小. 博主一年半前曾經 ...
2017-08-13 20:01 6 9199 推薦指數:
在我還會FFT的時候趕快寫下一篇博客留着以后看。。。。。。 FFT是用來求解多項式乘法,那么首先我們要知道多項式是啥。 \[A(x) = a_0+a_1x^1+a_2x^2+···+a_{n-1}x^{n-1} \] 這是個n-1次多項式(最高項是\(x^{n-1}\)),\(a_0 ...
原文鏈接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多項式 之 快速傅里葉變換(FFT)/數論變換(NTT)/例題與常用套路【入門】 前置技能 對復數以及復平面有一定的了解 對數論要求 ...
------------------------------------------本文只探討多項式乘法(FFT)在信息學中的應用如有錯誤或不明歡迎指出或提問,在此不勝感激 多項式 1.系數表示法 一般應用最廣泛的表示方式 用A(x)表示一個x-1次多項式,a[i]為$ x^i ...
FFT(快速傅立葉變換)和NTT(快速數論變換)看上去很高端,真正搞懂了就很simple了辣。 首先給出多項式的一些定義(初中數學內容): 形如Σaixi的式子就是多項式! 多項式中每個單項式叫做多項式的項。 這些單項式中的最高次數,就是這個多項式的次數。 有幾個不同的元也是多項式,但在 ...
FFT 快速傅里葉變換學習筆記 前言 由於老呂以及 dsr 巨巨的講解,將FFT學習了一下可能以后很大幾率都用不到,為了防止自己忘了,趁自己還有點記憶總結一下,可能理解的不深,或有錯誤,請不吝賜教。 定義 快速傅里葉變換 (fast Fourier transform), 即利用 ...
背景 據說是高斯發明的 考慮從六年級開始學的多項式相乘,需要將所有項相乘並打開,時間復雜度\(O(n^2)\).FFT能在\(O(nlogn)\)時間復雜度內解決這一問題.由於整數可以被拆成系數與進制冪之積的和,所以大整數乘法也可以用FFT加速. 表示法 一種顯然的加速方式:在學習拉格朗日 ...
再探快速傅里葉變換(FFT)學習筆記(其一) 目錄 再探快速傅里葉變換(FFT)學習筆記(其一) 寫在前面 為什么寫這篇博客 一些約定 前置知識 多項式卷積 多項式 ...
快速傅里葉變換 快速傅里葉變換(FFT / fast Fourier transform),即利用計算機計算離散傅里葉變換(DFT)的高效、快速計算方法的統稱,簡稱FFT。快速傅里葉變換是1965年由J.W.庫利和T.W.圖基提出的。采用這種算法能使計算機計算離散傅里葉變換所需要的乘法次數大為 ...