原文:神經網絡和誤差逆傳播算法(BP)

本人弱學校的CS 渣碩一枚,在找工作的時候,發現好多公司都對深度學習有要求,尤其是CNN和RNN,好吧,啥也不說了,拿過來好好看看。以前看習西瓜書的時候神經網絡這塊就是一個看的很模糊的塊,包括台大的視頻,上邊有AutoEncoder,感覺很亂,所以總和了各種博客,各路大神的知識,總結如果,如有問題,歡迎指出。 人工神經網絡 . 神經元 神經網絡由大量的神經元相互連接而成。每個神經元接受線性組合的 ...

2017-08-09 10:30 0 5690 推薦指數:

查看詳情

神經網絡 誤差傳播算法推導 BP算法

  誤差傳播算法是迄今最成功的神經網絡學習算法,現實任務中使用神經網絡時,大多使用BP算法進行訓練。   給定訓練集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即輸入示例由\(d\)個屬性描述,輸出\(l ...

Thu Nov 30 06:04:00 CST 2017 0 2486
神經網絡模型與誤差傳播算法

目錄 一、神經元模型 1.1 M-P神經元 1.2 激勵函數 1.2.1 單位階躍函數 1.2.2 logistic函數(sigmoid) 1.2.3 tanh函數(雙曲正切函數 ...

Mon Jan 11 04:26:00 CST 2021 0 492
神經網絡誤差逆向傳播(error Back Propagation, BP)算法

  BP算法是迄今為止最為成功的神經網絡學習算法,下面主要以多層前饋神經網絡為例推導該算法。 1. M-P 神經元模型   圖1展示了一個經典的神經元模型。在這個模型中,該神經元收到其他神經元傳來的3個輸入信號,這些輸入信號通過帶權重的連接進行傳遞,神經元接收到的總輸入值將與神經元的閾值進行 ...

Sun Jul 12 07:42:00 CST 2020 0 804
BP神經網絡誤差反向傳播算法公式推導圖解

BP神經網絡誤差反向傳播算法公式推導 開端: BP算法提出 1. BP神經網絡參數符號及激活函數說明 2. 網絡輸出誤差(損失函數)定義 3. 隱藏層與輸出層間的權重更新公式推導 ...

Sun May 30 08:57:00 CST 2021 0 183
神經網絡和深度學習之——誤差反向傳播算法

在講解誤差反向傳播算法之前,我們來回顧一下信號在神經網絡中的流動過程。請細細體會,當輸入向量\(X\)輸入感知器時,第一次初始化權重向量\(W\)是隨機組成的,也可以理解成我們任意設置了初始值,並和輸入做點積運算,然后模型通過權重更新公式來計算新的權重值,更新后的權重值又接着和輸入相互作用 ...

Thu Jul 19 19:52:00 CST 2018 2 12533
深度神經網絡(DNN)反向傳播算法(BP)

    在深度神經網絡(DNN)模型與前向傳播算法中,我們對DNN的模型和前向傳播算法做了總結,這里我們更進一步,對DNN的反向傳播算法(Back Propagation,BP)做一個總結。 1. DNN反向傳播算法要解決的問題     在了解DNN的反向傳播算法前,我們先要知道DNN反向傳播 ...

Tue Feb 21 20:36:00 CST 2017 142 78007
神經網絡——反向傳播BP算法公式推導

  在神經網絡中,當我們的網絡層數越來越多時,網絡的參數也越來越多,如何對網絡進行訓練呢?我們需要一種強大的算法,無論網絡多復雜,都能夠有效的進行訓練。在眾多的訓練算法中,其中最傑出的代表就是BP算法,它是至今最成功的神經網絡學習算法。在實際任務中,大部分都是使用的BP算法來進行網絡訓練 ...

Mon Apr 22 06:34:00 CST 2019 0 826
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM