梯度下降 利用感知器法則的要求是必須訓練樣本是線性可分的,當樣例不滿足這條件時,就不能再收斂,為了克服這個要求,引出了delta法則,它會收斂到目標概念的最佳近似! delta法則的關鍵思想是利用梯度下降(gradient descent)來搜索可能的權向量的假設空間,以找到最佳擬合訓練樣 ...
delta法則 盡管當訓練樣例線性可分時,感知器法則可以成功地找到一個權向量,但如果樣例不是線性可分時它將不能收斂。 因此,人們設計了另一個訓練法則來克服這個不足,稱為 delta 法則 delta rule 。如果訓練樣本不是線性可分的,那么 delta 法則會收斂到目標概念的最佳 近似。 delta 法則的關鍵思想是使用梯度下降 gradient descent 來搜索可能權向量的假設空間, ...
2017-06-29 13:41 0 1616 推薦指數:
梯度下降 利用感知器法則的要求是必須訓練樣本是線性可分的,當樣例不滿足這條件時,就不能再收斂,為了克服這個要求,引出了delta法則,它會收斂到目標概念的最佳近似! delta法則的關鍵思想是利用梯度下降(gradient descent)來搜索可能的權向量的假設空間,以找到最佳擬合訓練樣 ...
梯度下降法先隨機給出參數的一組值,然后更新參數,使每次更新后的結構都能夠讓損失函數變小,最終達到最小即可。在梯度下降法中,目標函數其實可以看做是參數的函數,因為給出了樣本輸入和輸出值后,目標函數就只剩下參數部分了,這時可以把參數看做是自變量,則目標函數變成參數的函數了。梯度下降每次都是更新每個參數 ...
一、梯度gradient http://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6 在標量場f中的一點處存在一個矢量G,該矢量方向為f在該點處變化率最大的方向,其模也等於這個最大變化率的數值,則矢量G稱為標量場f的梯度。 在向量微積分中,標量場的梯度 ...
1. 梯度 在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來,就是梯度。比如函數f(x,y), 分別對x,y求偏導數,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,簡稱grad f(x,y)或者▽f(x,y)。對於在點(x0,y0)的具體梯度向量 ...
(1)梯度下降法 在迭代問題中,每一次更新w的值,更新的增量為ηv,其中η表示的是步長,v表示的是方向 要尋找目標函數曲線的波谷,采用貪心法:想象一個小人站在半山腰,他朝哪個方向跨一步,可以使他距離谷底更近(位置更低),就朝這個方向前進。這個方向可以通過微分得到。選擇足夠小的一段曲線 ...
轉載請注明出處,樓燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 這幾種方法呢都是在求最優解中經常出現的方法,主要是應用迭代的思想來逼近。在梯度下降算法中,都是圍繞以下這個式子展開: \[\frac {\partial ...
原文:https://www.zybuluo.com/hanbingtao/note/476663 寫得非常好,適合入門! 神經元 神經元和感知器本質上是一樣的,只不過我們說感知器的時候,它的激 ...