問題 訓練神經網絡是一個很復雜的過程,在前面提到了深度學習中常用的激活函數,例如ELU或者Relu的變體能夠在開始訓練的時候很大程度上減少梯度消失或者爆炸問題,但是卻不能保證在訓練過程中不出現該問題,例如在訓練過程中每一層輸入數據分布發生了改變了,那么我們就需要使用更小的learning ...
網上找了下tensorflow中使用batch normalization的博客,發現寫的都不是很好,在此總結下: .原理 公式如下: y x 其中x是輸入,y是輸出, 是均值, 是方差, 和 是縮放 scale 偏移 offset 系數。 一般來講,這些參數都是基於channel來做的,比如輸入x是一個 NWHC格式 的feature map,那么上述參數都是 維的向量。其中 和 是可有可無的, ...
2017-07-27 14:05 21 64602 推薦指數:
問題 訓練神經網絡是一個很復雜的過程,在前面提到了深度學習中常用的激活函數,例如ELU或者Relu的變體能夠在開始訓練的時候很大程度上減少梯度消失或者爆炸問題,但是卻不能保證在訓練過程中不出現該問題,例如在訓練過程中每一層輸入數據分布發生了改變了,那么我們就需要使用更小的learning ...
tensorflow中實現batch_normalization的函數主要有兩個: 1)tf.nn.moments 2)tf.nn.batch_normalization tf.nn.moments主要是用來計算均值mean和方差variance的值,這兩個值被用在 ...
Tensorflow Batch normalization函數 覺得有用的話,歡迎一起討論相互學習~ 參考文獻 stackoverflow上tensorflow實現BN的不同函數的解釋 最近在運行程序時需要使用到Batch normalization方法,雖然網上 ...
問題 訓練神經網絡是一個很復雜的過程,在前面提到了深度學習中常用的激活函數,例如ELU或者Relu的變體能夠在開始訓練的時候很大程度上減少梯度消失或者爆炸問題,但是卻不能保證在訓練過程中不出現該問題,例如在訓練過程中每一層輸入數據分布發生了改變了,那么我們就需要使用更小的learning ...
在深度學習中為了提高訓練速度,經常會使用一些正正則化方法,如L2、dropout,后來Sergey Ioffe 等人提出Batch Normalization方法,可以防止數據分布的變化,影響神經網絡需要重新學習分布帶來的影響,會降低學習速率,訓練時間等問題。提出使用batch ...
Pytorch中的BatchNorm的API主要有: 一般來說pytorch中的模型都是繼承nn.Module類的,都有一個屬性trainning指定是否是訓練狀態,訓練狀態與否將會影響到某些層的參數是否是固定的,比如BN層或者Dropout層。通常用model.train()指定 ...
之前一直和小伙伴探討batch normalization層的實現機理,作用在這里不談,知乎上有一篇paper在講這個,鏈接 這里只探究其具體運算過程,我們假設在網絡中間經過某些卷積操作之后的輸出的feature map的尺寸為4×3×2×2 4為batch的大小,3為channel的數目 ...
批標准化(Bactch Normalization,BN)是為了克服神經網絡加深導致難以訓練而誕生的,隨着神經網絡深度加深,訓練起來就會越來越困難,收斂速度回很慢,常常會導致梯度彌散問題(Vanishing Gradient Problem)。 統計機器學習中有一個經典的假設 ...