稀疏自編碼器的學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 自編碼算法與稀疏性 已經討論了神經網絡在有 ...
UFLDL深度學習筆記 一 基本知識與稀疏自編碼 前言 近來正在系統研究一下深度學習,作為新入門者,為了更好地理解 交流,准備把學習過程總結記錄下來。最開始的規划是先學習理論推導 然后學習一兩種開源框架 第三是進階調優 加速技巧。越往后越要帶着工作中的實際問題去做,而不能是空中樓閣式沉迷在理論資料的舊數據中。深度學習領域大牛吳恩達 Andrew Ng 老師的UFLDL教程 Unsupervised ...
2017-06-24 12:48 0 3718 推薦指數:
稀疏自編碼器的學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 自編碼算法與稀疏性 已經討論了神經網絡在有 ...
稀疏自編碼器的學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 稀疏自編碼器Ⅰ這部分先簡單講述神經網絡的部分,它和稀疏 ...
UFLDL即(unsupervised feature learning & deep learning)。這是斯坦福網站上的一篇經典教程。顧名思義,你將在這篇這篇文章中學習到無監督特征學習和深度學習的主要觀點。 UFLDL全文出處在這:http://ufldl ...
今天來做UFLDL的第二個實驗,向量化。我們都知道,在matlab里面基本上如果使用for循環,程序是會慢的一逼的(可以說基本就運行不下去)所以在這呢,我們需要對程序進行向量化的處理,所謂向量化就是將matlab里面所有的for循環用矩陣運算的方法實現,在這里呢,因為之前的實驗我已經是按照向量化 ...
本筆記主要記錄學習《深度學習》的總結體會。如有理解不到位的地方,歡迎大家指出,我會努力改正。 在學習《深度學習》時,我主要是通過Andrew Ng教授在http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial上提供 ...
部分內容來自:http://ufldl.stanford.edu/wiki/index.php/%E6%A0%88%E5%BC%8F%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95 棧式自編碼神經網絡是一個由多層稀疏自編碼器組成的神經網絡,其前一層自編碼 ...
在深度學習中,前向傳播與反向傳播是很重要的概念,因此我們需要對前向傳播與反向傳播有更加深刻的理解,假設這里有一個三層的神經網絡 在這里,上面一排表示的是前向傳播,后面一排表示的是反向傳播,在前向傳播的情況每一層將通過一層激活函數去線性化,並且在前向傳播的過程中會緩存z[l],最終輸出y ...
李宏毅深度學習筆記 https://datawhalechina.github.io/leeml-notes 李宏毅深度學習視頻 https://www.bilibili.com/video/BV1JE411g7XF 背景 梯度下降 假設有很多參數\(\theta\) 選擇一組初始值 ...