原文:SparkMLlib回歸算法之決策樹

SparkMLlib回歸算法之決策樹 一 ,決策樹概念 ,決策樹算法 ID ,C . ,CART 之間的比較: ,ID 算法在選擇根節點和各內部節點中的分支屬性時,采用信息增益作為評價標准。信息增益的缺點是傾向於選擇取值較多的屬性,在有些情況下這類屬性可能不會提供太多有價值的信息。 ID 算法只能對描述屬性為離散型屬性的數據集構造決策樹,其余兩種算法對離散和連續都可以處理 ,C . 算法實例介紹 ...

2017-05-24 16:24 3 2454 推薦指數:

查看詳情

SparkMLlib分類算法決策樹學習

SparkMLlib分類算法決策樹學習 (一) 決策樹的基本概念     決策樹(Decision Tree)是在已知各種情況發生概率的基礎上,通過構成決策樹來求取凈現值的期望值大於等於零的概率,評價項目風險,判斷其可行性的決策分析方法,是直觀運用概率分析的一種圖解法。由於這種決策分支畫成 ...

Sun May 21 19:32:00 CST 2017 0 4105
決策樹-回歸

決策樹常用於分類問題,但是也能解決回歸問題。 在回歸問題中,決策樹只能使用cart決策樹,而cart決策樹,既可以分類,也可以回歸。 所以我們說的回歸就是指cart。 為什么只能是cart 1. 回想下id3,分裂后需要計算每個類別占總樣本的比例,回歸哪來的類別,c4.5也一樣 ...

Mon Apr 08 02:45:00 CST 2019 0 1161
決策樹回歸

解決問題   實現基於特征范圍的樹狀遍歷的回歸。 解決方案   通過尋找樣本中最佳的特征以及特征值作為最佳分割點,構建一棵二叉樹。選擇最佳特征以及特征值的原理就是通過滿足函數最小。其實選擇的過程本質是對於訓練樣本的區間的分割,基於區間計算均值,最終區域的樣本均值即為預測值 ...

Thu Jan 09 03:15:00 CST 2020 0 2710
回歸決策樹

分類決策樹的概念和算法比較好理解,並且這方面的資料也很多。但是對於回歸決策樹的資料卻比較少,西瓜書上也只是提了一下,並沒有做深入的介紹,不知道是不是因為回歸用的比較少。實際上網上常見的房價預測的案例就是一個應用回歸的很好的案例,所以我覺得至少有必要把回歸的概念以及算法弄清楚 ...

Sun May 19 05:41:00 CST 2019 0 717
決策樹(二)決策樹回歸

回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵的結果: 這棵看起來與之前構造的分類類似。主要 ...

Mon Mar 02 20:09:00 CST 2020 0 1443
機器學習--決策樹回歸及剪枝算法

上一篇介紹了決策樹之分類構造的幾種方法,本文主要介紹使用CART算法構建回歸及剪枝算法實現。主要包括以下內容: 1、CART回歸的介紹 2、二元切分的實現 3、總方差法划分特征 4、回歸的構建 5、回歸的測試與應用 6、剪枝算法 一、CART回歸的介紹 回歸與分類 ...

Tue Jan 23 09:08:00 CST 2018 1 6806
決策樹算法

算法思想 決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。 其每個非葉節點表示一個特征屬性上的測試,每個分支代表這個特征屬性在某個值域上的輸出,而每個葉節點存放一個類別。 使用決策樹進行決策的過程就是從根節點開始,測試待分類項中相應的特征屬性,並按照其值選擇輸出 ...

Tue Jul 10 00:38:00 CST 2018 0 12904
決策樹算法

利用ID3算法來判斷某天是否適合打網球。 (1)類別屬性信息熵的計算由於未分區前,訓練數據集中共有14個實例, 其中有9個實例屬於yes類(適合打網球的),5個實例屬於no類(不適合打網球), 因此分區前類別屬性的熵為: (2)非類別屬性信息熵 ...

Sun Apr 23 07:04:00 CST 2017 0 5437
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM