原文地址: https://www.cnblogs.com/to-creat/p/6075322.html 機器學習十大算法之一:EM算法。能評得上十大之一,讓人聽起來覺得挺NB的。什么是NB啊,我們一般說某個人很NB,是因為他能解決一些別人解決不了的問題。神為什么是神,因為神能做很多人做 ...
原理 對於沒有約束限制的優化問題,可以每次僅更新函數中的一維,固定其他參數,迭代多次以達到求解優化函數的目的。 W表示待求凸函數, 向量是待求解 具體過程如下 舉例 求解問題 f x ,x x x x x 迭代次數計數 固定x 更新x x x 固定x 更新x x x coding: utf Created on Wed Apr : : author: LoveDMR 坐標上升法 import nu ...
2017-04-09 12:59 0 1528 推薦指數:
原文地址: https://www.cnblogs.com/to-creat/p/6075322.html 機器學習十大算法之一:EM算法。能評得上十大之一,讓人聽起來覺得挺NB的。什么是NB啊,我們一般說某個人很NB,是因為他能解決一些別人解決不了的問題。神為什么是神,因為神能做很多人做 ...
本文介紹了Bregman迭代算法,Linearized Bregman算法(及在求解Basis Pursuit問題中的應用)和Split Bregman算法(及在求解圖像TV濾波問題中的應用)。 由於初學,加之水平有限,文中會有疏漏錯誤之處,希望大家批評指正賜教。 更新記錄 本文持續更新 ...
概念 1)凸優化:是指一種比較特殊的優化,是指求取最小值的目標函數為凸函數的一類優化問題。 2)兩個不等式: 兩個正數的算數平均值大於幾何平均值,即: 給定可逆矩陣Q,對於任意的向量x,y有: 3)凸集:集合C中任意兩個不同點的線段仍在集合C內,則稱集合S ...
1. 概述 \(\quad\)那么開始第二期,介紹凸錐和常見的集合,這期比較短(因為公式打得太累了),介紹凸集和凸錐與仿射集的意義在哪呢,為的就是將很多非凸集合轉化為凸集的手段,其中,又以凸包(包裹集合所有點的最小凸集)為最常用的手段,在細節一點,閉凸包(閉合的凸包)是更常用的手段。 2. 凸 ...
牛頓法(英語:Newton's method)又稱為牛頓-拉弗森方法(英語:Newton-Raphson method),它是一種在實數域和復數域上近似求解方程的方法。方法使用函數f(x)的泰勒級數的前面幾項來尋找方程f(x)=0的根。 一般情況對於f(x)是一元二次的情況直接應用求根公式就可以 ...
1、二分法(一階導) 二分法是利用目標函數的一階導數來連續壓縮區間的方法,因此這里除了要求 f 在 [a0,b0] 為單峰函數外,還要去 f(x) 連續可微。 (1)確定初始區間的中點 x(0)=(a0+b0)/2 。然后計算 f(x) 在 x(0) 處的一階導數 f'(x ...
典型的凸優化問題 什么樣的問題是一個凸優化問題呢? \[\begin{aligned} & min \quad f_0(x) \\ & s.t. \quad f_i(x) \leq 0 \qquad i=1,...,m \\ & \qquad \ a_i^Tx ...
關於非凸優化的方法, https://blog.csdn.net/kebu12345678/article/details/54926287 提到,可以把非凸優化轉換為凸優化,通過修改一些條件。 非凸優化問題如何轉化為凸優化問題的方法:1)修改目標函數,使之轉化為凸函數2)拋棄一些約束條件,使新 ...