邏輯回歸詳細推導:http://lib.csdn.net/article/machinelearning/35119 面試常見問題:https://www.cnblogs.com/ModifyRong/p/7739955.html 1、LR和SVM有什么相同點 (1)都是監督分類 ...
通常說的SVM與邏輯回歸的聯系一般指的是軟間隔的SVM與邏輯回歸之間的關系,硬間隔的SVM應該是與感知機模型的區別和聯系。而且工程中也不能要求所有的點都正確分類,訓練數據中噪聲的存在使得完全正確分類很可能造成過擬合。 軟間隔SVM與邏輯回歸的聯系 要說軟間隔SVM與聯系就要看軟間隔SVM的緣由。 軟間隔SVM表示樣本數據不必要求全部正確分類,允許少量的數據點犯錯。於是將硬間隔SVM的優化目標由: ...
2017-03-31 17:47 0 8406 推薦指數:
邏輯回歸詳細推導:http://lib.csdn.net/article/machinelearning/35119 面試常見問題:https://www.cnblogs.com/ModifyRong/p/7739955.html 1、LR和SVM有什么相同點 (1)都是監督分類 ...
線性回歸是回歸模型 感知器、邏輯回歸以及SVM是分類模型 線性回歸:f(x)=wx+b 感知器:f(x)=sign(wx+b)其中sign是個符號函數,若wx+b>=0取+1,若wx+b<0取-1 它的學習策略是最小化誤分類點到超平面的距離, 邏輯回歸:f(x ...
1. 前言 在機器學習的分類問題領域中,有兩個平分秋色的算法,就是邏輯回歸和支持向量機,這兩個算法個有千秋,在不同的問題中有不同的表現效果,下面我們就對它們的區別和聯系做一個簡單的總結。 2. LR和SVM的聯系 都是監督的分類算法。 都是線性分類方法 (不考慮核函數時 ...
一、SVM 思想在解決回歸問題上的體現 回歸問題的本質:找到一條直線或者曲線,最大程度的擬合數據點; 怎么定義擬合,是不同回歸算法的關鍵差異; 線性回歸定義擬合方式:讓所有數據點到直線的 MSE 的值最小; SVM 算法定義擬合的方式:在距離 Margin 的區域內 ...
12.支持向量機 覺得有用的話,歡迎一起討論相互學習~ 吳恩達老師課程原地址 參考資料 斯坦福大學 2014 機器學習教程中文筆記 by 黃海廣 12.1 SVM損失函數 從邏輯回歸到支持向量機 為了描述支持向量機,事實上,我將會從邏輯回歸開始展示 ...
1. Classification 這篇文章我們來討論分類問題(classification problems),也就是說你想預測的變量 y 是一個離散的值。我們會使用邏輯回歸算法來解決分類問題。 之前的文章中,我們討論的垃圾郵件分類實際上就是一個分類問題。類似的例子還有很多,例如一個在線 ...
一、邏輯回歸的概念 邏輯回歸又稱logistic回歸分析,是一種廣義的線性回歸分析模型,常用於數據挖掘,經濟預測等領域。邏輯回歸從本質來說屬於二分類問題,是基於Sigmoid函數(又叫“S型函數”)的有監督二類分類模型。 二、Sigmoid函數 Sigmoid函數公式 ...
1、邏輯函數 假設數據集有n個獨立的特征,x1到xn為樣本的n個特征。常規的回歸算法的目標是擬合出一個多項式函數,使得預測值與真實值的誤差最小: 而我們希望這樣的f(x)能夠具有很好的邏輯判斷性質,最好是能夠直接表達具有特征x的樣本被分到某類的概率。比如f(x)>0.5的時候能夠表示 ...