卷積是神經網絡的基礎,算是大廈的地基,卷積實際上來說就是兩個數列之間的相互處理。池化的作用我感覺主要就是減小圖像或者說矩陣的大小,並且不同的池化方法選取不同的信息作為保存信息。 轉載:http://www.cnblogs.com/zf-blog/p/6075286.html 卷積神經網絡 ...
轉載:http: www.cnblogs.com zf blog p .html 卷積神經網絡 CNN 由輸入層 卷積層 激活函數 池化層 全連接層組成,即INPUT CONV RELU POOL FC 卷積層:用它來進行特征提取,如下: 輸入圖像是 , 是它的深度 即R G B ,卷積層是一個 的filter 感受野 ,這里注意:感受野的深度必須和輸入圖像的深度相同。通過一個filter與輸入圖 ...
2017-03-30 11:54 0 45324 推薦指數:
卷積是神經網絡的基礎,算是大廈的地基,卷積實際上來說就是兩個數列之間的相互處理。池化的作用我感覺主要就是減小圖像或者說矩陣的大小,並且不同的池化方法選取不同的信息作為保存信息。 轉載:http://www.cnblogs.com/zf-blog/p/6075286.html 卷積神經網絡 ...
代碼倉庫: https://github.com/brandonlyg/cute-dl (轉載請注明出處!) 目標 上個階段使用MLP模型在在MNIST數據集上實現了92%左右的准確率,達到了tensorflow同等模型的水平。這個階段要讓cute-dl框架支持最簡單的卷積 ...
一維卷積層(即時域卷積),用以在一維輸入信號上進行鄰域濾波。當使用該層作為首層時,需要提供 ...
http://www.cnblogs.com/zf-blog/p/6075286.html 卷積神經網絡(CNN)由輸入層、卷積層、激活函數、池化層、全連接層組成,即INPUT-CONV-RELU-POOL-FC (1)卷積層:用它來進行特征提取,如下: 輸入圖像是32*32*3,3 ...
卷積神經網絡(CNN)由輸入層、卷積層、激活函數、池化層、全連接層組成,即INPUT-CONV-RELU-POOL-FC (1)卷積層:用它來進行特征提取,如下: 輸入圖像是32*32*3,3是它的深度(即R、G、B),卷積層是一個5*5*3的filter(感受野),這里注意:感受野的深度 ...
一、池化層的作用: 1、抑制噪聲,降低信息冗余度 2、提升模型的尺度不變性和旋轉不變性 3、降低模型計算量 4、防止過擬合 二、池化算法的操作方式 1、平均池化:保留背景信息,突出背景信息 2、最大池化:保留主要特征,突出前景信息 3、全局平均池化 4、全局自適應池化 5、ROI池化 6、金字塔 ...
1、池化層的理解 pooling池化的作用則體現在降采樣:保留顯著特征、降低特征維度,增大kernel的感受野。另外一點值得注意:pooling也可以提供一些旋轉不變性。 池化層可對提取到的特征信息進行降維,一方面使特征圖變小,簡化網絡計算復雜度並在一定程度上避免過擬合的出現;一方 ...
瓶頸層 5、ResNet模塊 6、SPP空間金字塔池化模塊 1、標准卷積: Co ...