認識高斯朴素貝葉斯class sklearn.naive_bayes.GaussianNB (priors=None, var_smoothing=1e-09)如果Xi是連續值,通常Xi的先驗概率為高斯分布(也就是正態分布),即在樣本類別Ck中,Xi的值符合正態分布。以此來估計每個特征下每個類別 ...
判別模型與生成模型 上篇報告中提到的回歸模型是判別模型,也就是根據特征值來求結果的概率。形式化表示為,在參數確定的情況下,求解條件概率。通俗的解釋為在給定特征后預測結果出現的概率。 比如說要確定一只羊是山羊還是綿羊,用判別模型的方法是先從歷史數據中學習到模型,然后通過提取這只羊的特征來預測出這只羊是山羊的概率,是綿羊的概率。換一種思路,我們可以根據山羊的特征首先學習出一個山羊模型,然后根據綿羊的 ...
2017-03-02 15:03 0 5851 推薦指數:
認識高斯朴素貝葉斯class sklearn.naive_bayes.GaussianNB (priors=None, var_smoothing=1e-09)如果Xi是連續值,通常Xi的先驗概率為高斯分布(也就是正態分布),即在樣本類別Ck中,Xi的值符合正態分布。以此來估計每個特征下每個類別 ...
algorithm)、高斯判別分析(Gaussian DiscriminantAnalysis,GDA)、朴素貝葉 ...
最近一直在看機器學習相關的算法,今天我們學習一種基於概率論的分類算法—朴素貝葉斯。本文在對朴素貝葉斯進行簡單介紹之后,通過Python編程加以實現。 一 朴素貝葉斯概述 ...
的條件下都是條件獨立的。 1、朴素貝葉斯朴素在哪里? 簡單來說:利用貝葉斯定理求解聯合概率P( ...
概率分類器: 朴素貝葉斯是一種直接衡量標簽和特征質檢的概率關系的有監督學習算法, 是一種專注分類的算法, 朴素貝葉斯的算法根源是基於概率論和數理統計的貝葉斯理論, 因此它是根正苗紅的概率模型. 關鍵概念: 聯合概率: X取值為x和Y的取值為y, 兩個事件同時發生的概率, 表示 ...
簡介 朴素貝葉斯是一種基於概率進行分類的算法,跟之前的邏輯回歸有些相似,兩者都使用了概率和最大似然的思想。但與邏輯回歸不同的是,朴素貝葉斯通過先驗概率和似然概率計算樣本在每個分類下的概率,並將其歸為概率值最大的那個分類。朴素貝葉斯適用於文本分類、垃圾郵件處理等NLP下的多分類問題。 核心 ...
3--朴素貝葉斯 原理 朴素貝葉斯本質上就是通過貝葉斯公式來對得到類別概率,但區別於通常的貝葉斯公式,朴素貝葉斯有一個默認條件,就是特征之間條件獨立。 條件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 貝葉斯公式可以寫成: \[p ...
朴素貝葉斯中的朴素是指特征條件獨立假設, 貝葉斯是指貝葉斯定理, 我們從貝葉斯定理開始說起吧. 1. 貝葉斯定理 貝葉斯定理是用來描述兩個條件概率之間的關系 1). 什么是條件概率? 如果有兩個事件A和B, 條件概率就是指在事件B發生的條件下, 事件A發生的概率, 記作P(A|B ...