作者:煎撓橙 鏈接:https://www.zhihu.com/question/36714044/answer/78680948 來源:知乎 著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請注明出處。 稍微系統的講講 Logistic 方程在生態學上的出現 ...
Logistic函數 又稱sigmoid函數 Logistic函數或Logistic曲線是一種常見的S形函數,它是皮埃爾 弗朗索瓦 韋呂勒在 或 年在研究它與人口增長的關系時命名的。廣義Logistic曲線可以模仿一些情況人口增長 P 的S形曲線。起初階段大致是指數增長 然后隨着開始變得飽和,增加變慢 最后,達到成熟時增加停止。 Logistic 邏輯斯諦 邏輯斯諦方程即微分方程: 大概就是通過 ...
2017-03-01 14:03 0 1846 推薦指數:
作者:煎撓橙 鏈接:https://www.zhihu.com/question/36714044/answer/78680948 來源:知乎 著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請注明出處。 稍微系統的講講 Logistic 方程在生態學上的出現 ...
說簡單些,logistic函數其實就是這樣一個函數: 這個函數的曲線如下所示: 很像一個“S”型吧,所以又叫 sigmoid曲線(S型曲線)。 上面只是作為一般使用時了解的即可,但實際上這個函數可是大有來頭: 這還要追溯到1838年,一個比利時的數學家 ...
sigmoid函數 logistic函數 觀察函數可知,Sigmoid函數是logistic函數在L=1、k=1、x0=0時的特例。 觀察logistic函數,易知其最大值為L(指數部分為0時);x0是函數在x軸上的位移;k決定了函數的陡峭程度。 參考:https ...
logistic 損失函數的解釋( Explanation of logistic regression cost function) 在邏輯回歸中,需要預測的結果$\hat y$可以表示為$\hat y = \sigma ({w^T}x + b)$,我們約定$\hat y = p(y|x ...
簡單總結一下機器學習最常見的兩個函數,一個是logistic函數,另一個是softmax函數,若有不足之處,希望大家可以幫忙指正。本文首先分別介紹logistic函數和softmax函數的定義和應用,然后針對兩者的聯系和區別進行了總結。 1. logistic函數 1.1 logistic ...
前言 最近有遇到些同學找我討論sigmoid訓練多標簽或者用在目標檢測中的問題,我想寫一些他們的東西,想到以前的博客里躺着這篇文章(2015年讀研時機器學課的作業)感覺雖然不夠嚴謹,但是很多地方還算直觀,就先把它放過來吧。 說明: 本文只討論Logistic回歸的交叉熵,對Softmax回歸 ...
https://www.cnblogs.com/cxchanpin/p/7359672.html https://www.cnblogs.com/yangzsnews/p/7496639.html ...