原文:SimRank協同過濾推薦算法

在協同過濾推薦算法總結中,我們講到了用圖模型做協同過濾的方法,包括SimRank系列算法和馬爾科夫鏈系列算法。現在我們就對SimRank算法在推薦系統的應用做一個總結。 .SimRank推薦算法的圖論基礎 SimRank是基於圖論的,如果用於推薦算法,則它假設用戶和物品在空間中形成了一張圖。而這張圖是一個二部圖。所謂二部圖就是圖中的節點可以分成兩個子集,而圖中任意一條邊的兩個端點分別來源於這兩個 ...

2017-02-03 15:56 35 13454 推薦指數:

查看詳情

協同過濾推薦算法

Collaborative Filtering Recommendation 向量之間的相似度 度量向量之間的相似度方法很多了,你可以用距離(各種距離)的倒數,向量夾角,Pearson相關系數等。 ...

Fri Aug 31 05:00:00 CST 2012 23 47061
什么是協同過濾推薦算法

剖析千人千面的大腦——推薦引擎部分,其中這篇是定位:對推薦引擎中的核心算法協同過濾進行深挖。 首先,千人千面融合各種場景,如搜索,如feed流,如廣告,如風控,如策略增長,如購物全流程等等;其次千人千面的大腦肯定是內部的推薦引擎,這里有諸多規則和算法在實現對上述各個場景進行“細分推薦排序 ...

Tue Sep 14 19:12:00 CST 2021 0 204
協同過濾推薦算法

一、推薦算法 當你在電商網站購物時,天貓會彈出“和你買了同樣物品的人還買了XXX”的信息;當你在SNS社交網站閑逛時,也會看到“你可能認識XXX“的信息;當你在微博添加關注人時,也會看到“你可能對XXX也感興趣”等等。所有這一切,都是背后的推薦算法運作 ...

Sun Oct 27 00:39:00 CST 2019 0 342
協同過濾推薦算法

協同過濾(Collaborative Filtering,簡稱CF)推薦算法是誕生最早,並且較為著名的推薦算法。主要的功能是預測和推薦算法通過對用戶歷史行為數據的挖掘發現用戶的偏好,基於不同的偏好對用戶進行群組划分並推薦品味相似的商品。協同過濾推薦算法分為兩類,分別是基於用戶的協同過濾算法 ...

Sat Oct 06 23:50:00 CST 2018 0 1174
什么是協同過濾推薦算法

剖析千人千面的大腦——推薦引擎部分,其中這篇是定位:對推薦引擎中的核心算法協同過濾進行深挖。 首先,千人千面融合各種場景,如搜索,如feed流,如廣告,如風控,如策略增長,如購物全流程等等;其次千人千面的大腦肯定是內部的推薦引擎,這里有諸多規則和算法在實現對上述各個場景進行“細分推薦排序 ...

Thu Aug 15 04:45:00 CST 2019 1 5609
協同過濾推薦算法總結

推薦算法具有非常多的應用場景和商業價值,因此對推薦算法值得好好研究。推薦算法種類很多,但是目前應用最廣泛的應該是協同過濾類別的推薦算法,本文就對協同過濾類別的推薦算法做一個概括總結,后續也會對一些典型的協同過濾推薦算法做原理總結。 1. 推薦算法概述     推薦算法是非常古老的,在機器學習 ...

Tue Sep 14 17:18:00 CST 2021 0 188
協同過濾推薦算法總結

    推薦算法具有非常多的應用場景和商業價值,因此對推薦算法值得好好研究。推薦算法種類很多,但是目前應用最廣泛的應該是協同過濾類別的推薦算法,本文就對協同過濾類別的推薦算法做一個概括總結,后續也會對一些典型的協同過濾推薦算法做原理總結。 1. 推薦算法概述     推薦算法是非常古老 ...

Wed Jan 25 23:12:00 CST 2017 54 53575
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM