原文:線性回歸與梯度下降法[一]——原理與實現

看了coursea的機器學習課,知道了梯度下降法。一開始只是對其做了下簡單的了解。隨着內容的深入,發現梯度下降法在很多算法中都用的到,除了之前看到的用來處理線性模型,還有BP神經網絡等。於是就有了這篇文章。 本文主要講了梯度下降法的兩種迭代思路,隨機梯度下降 Stochastic gradient descent 和批量梯度下降 Batch gradient descent 。以及他們在pytho ...

2016-12-12 16:23 5 11092 推薦指數:

查看詳情

回歸梯度下降法實現原理

回歸梯度下降 回歸在數學上來說是給定一個點集,能夠用一條曲線去擬合之,如果這個曲線是一條直線,那就被稱為線性回歸,如果曲線是一條二次曲線,就被稱為二次回歸回歸還有很多的變種,如locally weighted回歸,logistic回歸 ...

Thu Mar 22 06:01:00 CST 2018 8 3792
sklearn中實現隨機梯度下降法(多元線性回歸

sklearn中實現隨機梯度下降法 隨機梯度下降法是一種根據模擬退火的原理對損失函數進行最小化的一種計算方式,在sklearn中主要用於多元線性回歸算法中,是一種比較高效的最優化方法,其中的梯度下降系數(即學習率eta)隨着遍歷過程的進行在不斷地減小。另外,在運用隨機梯度下降法之前需要利用 ...

Wed Aug 07 22:11:00 CST 2019 0 1482
Python實現——一元線性回歸(梯度下降法)

2019/3/25 一元線性回歸——梯度下降/最小二乘法又名:一兩位小數點的悲劇 感覺這個才是真正的重頭戲,畢竟前兩者都是更傾向於直接使用公式,而不是讓計算機一步步去接近真相,而這個梯度下降就不一樣了,計算機雖然還是跟從現有語句/公式,但是在不斷嘗試中一步步接近目的地。 簡單來說,梯度下降的目的 ...

Tue Apr 02 06:17:00 CST 2019 0 1230
梯度下降法求解線性回歸

梯度下降法 梯度下降法(英語:Gradient descent)是一個一階最優化算法,通常也稱為最速下降法。 要使用梯度下降法找到一個函數的局部極小值,必須向函數上當前點對應梯度(或者是近似梯度)的反方向的規定步長距離點進行迭代搜索。如果相反地向梯度正方向迭代進行搜索,則會接近函數的局部極大值點 ...

Fri Jan 24 23:59:00 CST 2020 0 2123
線性回歸和批量梯度下降法python

通過學習斯坦福公開課的線性規划和梯度下降,參考他人代碼自己做了測試,寫了個類以后有時間再去擴展,代碼注釋以后再加,作業好多:           圖1. 迭代過程中的誤差cost ...

Wed Dec 11 06:01:00 CST 2013 0 6763
線性回歸梯度下降法[二]——優化與比較

接着上文——機器學習基礎——梯度下降法(Gradient Descent)往下講。這次我們主要用matlab來實現更一般化的梯度下降法。由上文中的幾個變量到多個變量。改變算法的思路,使用矩陣來進行計算。同時對算法的優化和調參進行總結。即特征縮放(feature scaling)問題和學習速率 ...

Mon Dec 26 05:09:00 CST 2016 0 2383
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM