神經網絡與機器學習 第5章 隨機梯度下降法-BP的起源 神經網絡的訓練有很多方法,以數值優化為基礎的隨機梯度學習算法能夠處理大規模的數據集合,它也是后面多層神經網絡后向傳播算法的基礎。 隨機梯度下降是以均方誤差為目標函數的近似最速下降算法,該算法被廣泛用於自適應信號處理領域 ...
本文總結自 Neural Networks and Deep Learning 第 章的部分內容。 使用梯度下降算法進行學習 Learning with gradient descent . 目標 我們希望有一個算法,能讓我們找到權重和偏置,以至於網絡的輸出y x 能夠擬合所有的訓練輸入x。 . 代價函數 cost function 定義一個Cost function loss function, ...
2016-12-10 22:35 0 4390 推薦指數:
神經網絡與機器學習 第5章 隨機梯度下降法-BP的起源 神經網絡的訓練有很多方法,以數值優化為基礎的隨機梯度學習算法能夠處理大規模的數據集合,它也是后面多層神經網絡后向傳播算法的基礎。 隨機梯度下降是以均方誤差為目標函數的近似最速下降算法,該算法被廣泛用於自適應信號處理領域 ...
1. 損失函數 在線性回歸分析中,假設我們的線性回歸模型為: 樣本對應的正確數值為: 現在假設判別函數的系數都找出來了,那么通過判別函數G(x),我們可以預測是樣本x對的值為。那這個跟 ...
BP神經網絡梯度下降算法 目錄(?)[+] 菜鳥初學人智相關問題,智商低,艱苦學習中,轉文只為保存,其中加上了一些個人注釋,便於更簡單的理解~新手也可以看,共勉。 轉自博客園@ 編程De: http ...
https://blog.csdn.net/weixin_38206214/article/details/81143894 在深度學習的路上,從頭開始了解一下各項技術。本人是DL小白,連續記錄我自己看的一些東西,大家可以互相交流。本文參考:本文參考吳恩達老師的Coursera深度學習課程,很棒 ...
在求解神經網絡算法的模型參數,梯度下降(Gradient Descent)是最常采用的方法。下面是我個人學習時對梯度下降的理解,如有不對的地方歡迎指出。 1、✌ 梯度定義 微積分我們學過,對多元函數的各個變量求偏導數,把求得的各個參數的偏導數以向量的形式 ...
不多說,直接上干貨! 回歸與梯度下降 回歸在數學上來說是給定一個點集,能夠用一條曲線去擬合之,如果這個曲線是一條直線,那就被稱為線性回歸,如果曲線是一條二次曲線,就被稱為二次回歸,回歸還有很多的變種,如本地加權回歸、邏輯回歸,等等。 用一個 ...
上使用梯度下降算法。 從而神經網絡模型在訓練數據的孫師函數盡可能小。 --反向傳播算法是訓練神經網絡的 ...