原文:隨機梯度下降算法求解SVM

測試代碼 如下: clear load E: dataset USPS USPS.mat data format: Xtr n dim Xte n dim Ytr n Yte n warning: labels must range from to n, n is the number of labels other label values will make mistakes u uniqu ...

2016-11-18 15:42 0 3472 推薦指數:

查看詳情

隨機梯度下降算法

1. 損失函數 在線性回歸分析中,假設我們的線性回歸模型為: 樣本對應的正確數值為: 現在假設判別函數的系數都找出來了,那么通過判別函數G(x),我們可以預測是樣本x對的值為。那這個跟 ...

Sun Jan 31 22:48:00 CST 2016 0 6105
梯度下降算法之方程求解

從上個月專攻機器學習,從本篇開始,我會陸續寫機器學習的內容,都是我的學習筆記。 問題 梯度下降算法用於求數學方程的極大值極小值問題,這篇文章講解如何利用梯度下降算法求解方程 \(x^5+e^x+3x−3=0\) 的根; 方法 首先來解決第一個問題,從方程的形式我們就能初步判斷,它很可能 ...

Sat Dec 26 06:14:00 CST 2020 0 533
隨機梯度下降優化算法-----批量梯度下降隨機梯度下降,小批量梯度下降

  梯度下降算法是通過沿着目標函數J(θ)參數θ∈R的梯度(一階導數)相反方向−∇θJ(θ)來不斷更新模型參數來到達目標函數的極小值點(收斂),更新步長為η。有三種梯度下降算法框架,它們不同之處在於每次學習(更新模型參數)使用的樣本個數,每次更新使用不同的樣本會導致每次學習的准確性和學習時間 ...

Fri Jul 27 23:03:00 CST 2018 0 875
機器學習概念之梯度下降算法(全量梯度下降算法隨機梯度下降算法、批量梯度下降算法

  不多說,直接上干貨! 回歸與梯度下降   回歸在數學上來說是給定一個點集,能夠用一條曲線去擬合之,如果這個曲線是一條直線,那就被稱為線性回歸,如果曲線是一條二次曲線,就被稱為二次回歸,回歸還有很多的變種,如本地加權回歸、邏輯回歸,等等。   用一個 ...

Wed Sep 06 03:40:00 CST 2017 0 4220
梯度下降隨機梯度下降

梯度下降法先隨機給出參數的一組值,然后更新參數,使每次更新后的結構都能夠讓損失函數變小,最終達到最小即可。在梯度下降法中,目標函數其實可以看做是參數的函數,因為給出了樣本輸入和輸出值后,目標函數就只剩下參數部分了,這時可以把參數看做是自變量,則目標函數變成參數的函數了。梯度下降每次都是更新每個參數 ...

Sat Apr 04 00:35:00 CST 2015 2 18684
隨機梯度下降的邏輯回歸算法(SGDLR)

由於第一次實驗的實驗報告不在這台機器,先寫這一算法吧。 SGDLR(the Stochastic Gradient Descent for Logistic Regression),要講解這一算法,首先要把名字拆為幾塊。 1 隨機 2 梯度下降 3邏輯回歸 先貼一篇文章:http ...

Sat Nov 01 04:22:00 CST 2014 0 3088
【stanford】梯度梯度下降隨機梯度下降

一、梯度gradient http://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6 在標量場f中的一點處存在一個矢量G,該矢量方向為f在該點處變化率最大的方向,其模也等於這個最大變化率的數值,則矢量G稱為標量場f的梯度。 在向量微積分中,標量場的梯度 ...

Fri Dec 14 06:35:00 CST 2012 1 6572
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM