轉載請注明出處: http://www.cnblogs.com/gufeiyang 一個人想看電影的時候常常會思考要看什么電影呢。這個時候他可能會問周圍愛好的人求推薦。現在社 ...
集體智慧和協同過濾 . 什么是集體智慧 社會計算 集體智慧 Collective Intelligence 並不是 Web . 時代特有的,只是在 Web . 時代,大家在 Web 應用中利用集體智慧構建更加有趣的應用或者得到更好的用戶體驗。集體智慧是指在大量的人群的行為和數據中收集答案,幫助你對整個人群得到統計意義上的結論,這些結論是我們在單個個體上無法得到的,它往往是某種趨勢或者人群中共性的 ...
2016-11-02 20:27 1 4360 推薦指數:
轉載請注明出處: http://www.cnblogs.com/gufeiyang 一個人想看電影的時候常常會思考要看什么電影呢。這個時候他可能會問周圍愛好的人求推薦。現在社 ...
協同過濾算法原理 一、協同過濾算法的原理及實現 二、基於物品的協同過濾算法詳解 一、協同過濾算法的原理及實現 協同過濾推薦算法是誕生最早,並且較為著名的推薦算法。主要的功能是預測和推薦。算法通過對用戶歷史行為數據的挖掘發現用戶的偏好,基於不同的偏好對用戶 ...
...
User-based就是把與你有相同愛好的用戶所喜歡的物品(並且你還沒有評過分)推薦給你: Item-based則與之相反,把和你之前喜歡的物品近似的物品推薦給你: 原文:https ...
使用Spark進行ALS編程的例子可以看:http://www.cnblogs.com/charlesblc/p/6165201.html ALS:alternating least squares 關於協同過濾ALS原理的可以看這篇文章:http://www.docin.com ...
剖析千人千面的大腦——推薦引擎部分,其中這篇是定位:對推薦引擎中的核心算法:協同過濾進行深挖。 首先,千人千面融合各種場景,如搜索,如feed流,如廣告,如風控,如策略增長,如購物全流程等等;其次千人千面的大腦肯定是內部的推薦引擎,這里有諸多規則和算法在實現對上述各個場景進行“細分推薦排序 ...
下面講解的鏈接 https://blog.csdn.net/shf1730797676/article/details/97100815 基本思路:當用戶A需要個性化推薦的時候,可以先找到和他興趣 ...
Collaborative Filtering Recommendation 向量之間的相似度 度量向量之間的相似度方法很多了,你可以用距離(各種距離)的倒數,向量夾角,Pearson相關系數等。 ...