機器學習的本質是建立優化模型,通過優化方法,不斷迭代參數向量,找到使目標函數最優的參數向量。最終建立模型 通常用到的優化方法:梯度下降方法、牛頓法、擬牛頓法等。這些優化方法的本質就是在更新參數。 一、梯度下降法 0、梯度下降的思想 · 通過搜索方向和步長來對參數進行更新。其中搜索 ...
參考知乎:https: www.zhihu.com question 這篇博文講牛頓法講的非常好:http: blog.csdn.net itplus article details 梯度下降法用目標函數的一階偏導 以負梯度方向作為搜索方向,只考慮目標函數 在迭代點的局部性質 牛頓法同時考慮了目標函數的一 二階偏導數,考慮了梯度變化 趨勢,因而能更合適的確定搜索方向加快收斂,但牛頓法也存在以下缺點 ...
2016-10-11 21:49 0 2053 推薦指數:
機器學習的本質是建立優化模型,通過優化方法,不斷迭代參數向量,找到使目標函數最優的參數向量。最終建立模型 通常用到的優化方法:梯度下降方法、牛頓法、擬牛頓法等。這些優化方法的本質就是在更新參數。 一、梯度下降法 0、梯度下降的思想 · 通過搜索方向和步長來對參數進行更新。其中搜索 ...
在機器學習的優化問題中,梯度下降法和牛頓法是常用的兩種凸函數求極值的方法,他們都是為了求得目標函數的近似解。在邏輯斯蒂回歸模型的參數求解中,一般用改良的梯度下降法,也可以用牛頓法。由於兩種方法有些相似,我特地拿來簡單地對比一下。下面的內容需要讀者之前熟悉兩種算法。 梯度下降法 梯度下降法用來 ...
1 梯度下降法 我們使用梯度下降法是為了求目標函數最小值f(X)對應的X,那么我們怎么求最小值點x呢?注意我們的X不一定是一維的,可以是多維的,是一個向量。我們先把f(x)進行泰勒展開: 這里的α是學習速率,是個標量,代表X變化的幅度;d表示的是單位步長,是一個矢量,有方向,單位長度 ...
梯度下降法是沿着梯度下降的算法,該算法的收斂速度受梯度大小影響非常大,當梯度小時算法收斂速度非常慢。 牛頓法是通過把目標函數做二階泰勒展開,通過求解這個近似方程來得到迭代公式,牛頓法的迭代公式中用到了二階導數來做指導,所以牛頓法的收斂速度很快,但是由於要求二階導,所以牛頓法的時間復雜度非常高 ...
假設有一個可導函數f(x),我們的目標函數是求解最小值$min\frac{1}{2}f(x)^{2}$,假設x給定的初始值是$x_0$ 1、梯度下降法 將f(x)在$x_0$處進行1階泰勒級數展開:$f(x)=f(x_0)+f(x_0)^{'}(x-x_0)$。 則我們的目標函數變成 ...
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何為梯度? 一般解釋: f(x)在x0的梯度:就是f(x)變化最快的方向 舉個例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是說x ...
泰勒公式可以表示為: \[f(\boldsymbol{x}+\boldsymbol{\delta})=f(\boldsymbol{x})+\boldsymbol{g}^{\rm T}\bold ...
概述 優化問題就是在給定限制條件下尋找目標函數\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的極值點。極值可以分為整體極值或局部極值,整 ...