原文:論文筆記之:Deep Recurrent Q-Learning for Partially Observable MDPs

Deep Recurrent Q Learning for Partially Observable MDPs 摘要:DQN 的兩個缺陷,分別是:limited memory 和 rely on being able to perceive the complete game screen at each decision point. 為了解決這兩個問題,本文嘗試用 LSTM 單元 替換到后面 ...

2016-10-03 21:25 0 2884 推薦指數:

查看詳情

論文筆記之:Deep Reinforcement Learning with Double Q-learning

Deep Reinforcement Learning with Double Q-learning Google DeepMind   Abstract   主流的 Q-learning 算法過高的估計在特定條件下的動作值。實際上,之前是不知道是否這樣的過高估計是 common ...

Mon Jun 27 23:39:00 CST 2016 0 5332
論文筆記之:Deep Attention Recurrent Q-Network

   Deep Attention Recurrent Q-Network 5vision groups   摘要:本文將 DQN 引入了 Attention 機制,使得學習更具有方向性和指導性。(前段時間做一個工作打算就這么干,誰想到,這么快就被這幾個孩子給實現了,自愧不如 ...

Mon Oct 03 23:34:00 CST 2016 0 2587
文獻筆記:Deep Reinforcement Learning with Double Q-learning

該文章是針對Hado van Hasselt於2010年提出的Double Q-learning算法的進一步拓展,是結合了DQN網絡后,提出的關於DQN的Double Q-learning算法。該算法主要目的是修正DQN中max項所產生的過高估計問題,所謂過高估計,在前面的博客Issues ...

Tue Mar 12 03:34:00 CST 2019 0 701
論文筆記Deep Residual Learning

之前提到,深度神經網絡在訓練中容易遇到梯度消失/爆炸的問題,這個問題產生的根源詳見之前的讀書筆記。在 Batch Normalization 中,我們將輸入數據由激活函數的收斂區調整到梯度較大的區域,在一定程度上緩解了這種問題。不過,當網絡的層數急劇增加時,BP 算法中導數的累乘效應還是很容易 ...

Sun Jan 07 22:35:00 CST 2018 3 4048
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM