Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法過高的估計在特定條件下的動作值。實際上,之前是不知道是否這樣的過高估計是 common ...
Dueling Network Architectures for Deep Reinforcement Learning ICML Best Paper 摘要:本文的貢獻點主要是在 DQN 網絡結構上,將卷積神經網絡提出的特征,分為兩路走,即:the state value function 和 the state dependent action advantage function. 這個 ...
2016-10-02 16:55 0 4688 推薦指數:
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法過高的估計在特定條件下的動作值。實際上,之前是不知道是否這樣的過高估計是 common ...
Playing Atari with Deep Reinforcement Learning 《Computer Science》, 2013 Abstract: 本文提出了一種深度學習方法,利用強化學習的方法,直接從高維的感知輸入中學習控制策略。模型是一個卷積神經網絡 ...
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算是火了一把,在Google Deep Mind的主頁上,更是許多關於此 ...
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度強化學習最近被人發現貌似不太穩定,有人提出很多改善的方法,這些方法有很多共同的 idea:一個 online 的 agent 碰到的觀察到的數據 ...
的識別效果。 這篇論文的主要思想是通過學習兩個deep network來構建face attrib ...
之前提到,深度神經網絡在訓練中容易遇到梯度消失/爆炸的問題,這個問題產生的根源詳見之前的讀書筆記。在 Batch Normalization 中,我們將輸入數據由激活函數的收斂區調整到梯度較大的區域,在一定程度上緩解了這種問題。不過,當網絡的層數急劇增加時,BP 算法中導數的累乘效應還是很容易 ...
這篇文章的主要貢獻點在於: 1.實驗證明僅僅利用圖像整體的弱標簽很難訓練出很好的分割模型; 2.可以利用bounding box來進行訓練,並且得到了較好的結果,這樣可以代替用pixel-leve ...
論文地址:https://arxiv.org/abs/1611.01578 1. 論文思想 強化學習,用一個RNN學一個網絡參數的序列,然后將其轉換成網絡,然后訓練,得到一個反饋,這個反饋作用於RNN網絡,用於生成新的序列。 2. 整體架構 3. RNN網絡 4. 具體實現 ...