原文:決策樹學習基決策樹學習基本算法

決策樹學習基本算法 輸入:訓練集 屬性集. 過程:函數 : 生成結點node : if 中樣本全屬於同一類別 then : 將node標記為類葉結點 return : end if : if 中樣本在上取值相同 then : 將node標記為葉結點,其類別標記為中樣本數最多的類 return : end if : 從中選擇最優化分屬性 : for 的每一個值 do : 為node生成一個分支 令表 ...

2016-09-05 08:07 0 2127 推薦指數:

查看詳情

機器學習決策樹算法

下表為是否適合打壘球的決策表,預測E= {天氣=晴,溫度=適中,濕度=正常,風速=弱} 的場合,是否合適中打壘球。 天氣 溫度 濕度 風速 活動 晴 炎熱 ...

Sat Oct 28 17:49:00 CST 2017 0 8023
機器學習算法( 三、決策樹)

  本節使用的算法稱為ID3,另一個決策樹構造算法CART以后講解。 一、概述    我們經常使用決策樹處理分類問題,它的過程類似二十個問題的游戲:參與游戲的一方在腦海里想某個事物,其他參與者向他提出問題,只允許提20個問 題,問題的答案也只能用對或錯回答。問問題的人通過推斷分解,逐步縮小 ...

Tue Aug 02 00:12:00 CST 2016 0 3293
SparkMLlib分類算法決策樹學習

SparkMLlib分類算法決策樹學習 (一) 決策樹的基本概念     決策樹(Decision Tree)是在已知各種情況發生概率的基礎上,通過構成決策樹來求取凈現值的期望值大於等於零的概率,評價項目風險,判斷其可行性的決策分析方法,是直觀運用概率分析的一種圖解法。由於這種決策分支畫成 ...

Sun May 21 19:32:00 CST 2017 0 4105
決策樹學習總結

又叫判定,是一種基本的分類與回歸方法。 優點:可讀性強,分類速度快,容易轉換成if-then分類規則 通常分為3個步驟:特征(屬性)選擇、決策樹的生成、決策樹的修剪。 特征選擇即選擇分裂屬性,又叫屬性選擇度量,把數據划分成較小的分區。 決策樹的生成又叫決策樹學習或者決策樹 ...

Sun May 03 05:27:00 CST 2015 0 2019
決策樹算法

1. 決策樹算法 1.1 背景知識 信息量\(I(X)\):指一個樣本/事件所蘊含的信息,如果一個事情的概率越大,那么就認為該事件所蘊含的信息越少,確定事件不攜帶任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用來描述系統信息量 ...

Thu Jul 18 06:42:00 CST 2019 0 414
決策樹算法

算法思想 決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。 其每個非葉節點表示一個特征屬性上的測試,每個分支代表這個特征屬性在某個值域上的輸出,而每個葉節點存放一個類別。 使用決策樹進行決策的過程就是從根節點開始,測試待分類項中相應的特征屬性,並按照其值選擇輸出 ...

Tue Jul 10 00:38:00 CST 2018 0 12904
決策樹算法

利用ID3算法來判斷某天是否適合打網球。 (1)類別屬性信息熵的計算由於未分區前,訓練數據集中共有14個實例, 其中有9個實例屬於yes類(適合打網球的),5個實例屬於no類(不適合打網球), 因此分區前類別屬性的熵為: (2)非類別屬性信息熵 ...

Sun Apr 23 07:04:00 CST 2017 0 5437
決策樹算法

###決策樹基礎概念 在機器學習中,決策樹是一個預測模型,他代表的是對象屬性與對象值之間的一種映射關系。Entropy (熵) 表示的是系統的凌亂程度,它是決策樹決策依據,熵的概念來源於香儂的信息論。 ###決策樹決策過程 選擇分裂特征:根據某一指標(信息增益,信息增益比或尼 ...

Sun Jan 15 22:49:00 CST 2017 0 7039
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM