背景 據說是高斯發明的 考慮從六年級開始學的多項式相乘,需要將所有項相乘並打開,時間復雜度\(O(n^2)\).FFT能在\(O(nlogn)\)時間復雜度內解決這一問題.由於整數可以被拆成系數與進制冪之積的和,所以大整數乘法也可以用FFT加速. 表示法 一種顯然的加速方式:在學習拉格朗日 ...
FFT學得還是有點模糊,原理那些基本還是算有所理解了吧,不過自己推這個推不動。 看的資料主要有這兩個: http: blog.miskcoo.com polynomial multiplication and fast fourier transform https: www.zybuluo.com note 這兒簡單做做筆記。 多項式點值表示 首先 FFT 可以用來快速計算兩個多項式的乘積。 ...
2016-08-30 21:40 19 1733 推薦指數:
背景 據說是高斯發明的 考慮從六年級開始學的多項式相乘,需要將所有項相乘並打開,時間復雜度\(O(n^2)\).FFT能在\(O(nlogn)\)時間復雜度內解決這一問題.由於整數可以被拆成系數與進制冪之積的和,所以大整數乘法也可以用FFT加速. 表示法 一種顯然的加速方式:在學習拉格朗日 ...
FFT 快速傅里葉變換學習筆記 前言 由於老呂以及 dsr 巨巨的講解,將FFT學習了一下可能以后很大幾率都用不到,為了防止自己忘了,趁自己還有點記憶總結一下,可能理解的不深,或有錯誤,請不吝賜教。 定義 快速傅里葉變換 (fast Fourier transform), 即利用 ...
再探快速傅里葉變換(FFT)學習筆記(其一) 目錄 再探快速傅里葉變換(FFT)學習筆記(其一) 寫在前面 為什么寫這篇博客 一些約定 前置知識 多項式卷積 多項式 ...
題目鏈接 3122. 多項式乘法同P3803 【模板】多項式乘法(FFT) 3122. 多項式乘法 題目描述 給定一個 \(n\) 次多項式 \(F(x)=a_0+a_1x+a_2x_2+…+a_nx_n\)。 以及一個 \(m\) 次多項式 \(G(x ...
快速傅里葉變換(FFT) FFT 是之前學的,現在過了比較久的時間,終於打算在回顧的時候系統地整理一篇筆記,有寫錯的部分請指出來啊 qwq。 卷積 卷積、旋積或褶積(英語:Convolution)是通過兩個函數 \(f\) 和 \(g\) 生成第三個函數的一種數學算子。 定義 設 ...
基於python的快速傅里葉變換FFT(二)本文在上一篇博客的基礎上進一步探究正弦函數及其FFT變換。 知識點 FFT變換,其實就是快速離散傅里葉變換,傅立葉變換是數字信號處理領域一種很重要的算法。要知道傅立葉變換算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續測量的時序或信號 ...
本文只討論FFT在信息學奧賽中的應用 文中內容均為個人理解,如有錯誤請指出,不勝感激 前言 先解釋幾個比較容易混淆的縮寫吧 DFT:離散傅里葉變換—>$O(n^2)$計算多項式乘法 FFT:快速傅里葉變換—>$O(n*\log(n)$計算多項式乘法 FNTT/NTT:快速 ...
什么是傅里葉變換? 法國科學家傅里葉提出,任何一條周期曲線,無論多么跳躍或不規則,都能表示成一組光滑正弦曲線疊加之和。 傅里葉變換的目的是可將時域(即時間域)上的信號轉變為頻域(即頻率域)上的信號,隨着域的不同,對同一個事物的了解角度也就隨之改變,因此在時域中某些不好處理的地方,在頻域就可以 ...