原文:最優化問題(牛頓法和梯度下降法)

恢復內容開始 http: www.zhihu.com question 引自知乎 牛頓法是二階收斂,梯度下降是一階收斂, 所以牛頓法就更快。如果更通俗地說的話,比如你想找一條最短的路徑走到一個盆地的最底部,梯度下降法每次只從你當前所處位置選一個坡度最大的方向走一步,牛頓法在選擇方向時,不僅會考慮坡度是否夠大,還會考慮你走了一步之后,坡度是否會變得更大。所以,可以說牛頓法比梯度下降法看得更遠一點, ...

2016-09-04 10:13 0 3368 推薦指數:

查看詳情

常見的幾種最優化方法(梯度下降法牛頓、擬牛頓、共軛梯度等)

我們每個人都會在我們的生活或者工作中遇到各種各樣的最優化問題,比如每個企業和個人都要考慮的一個問題“在一定成本下,如何使利潤最大化”等。最優化方法是一種數學方法,它是研究在給定約束之下如何尋求某些因素(的量),以使某一(或某些)指標達到最優的一些學科的總稱。隨着學習的深入,博主越來越發現最優化方法 ...

Sun Sep 17 04:32:00 CST 2017 9 87965
最優化方法課程總結三-- 最速下降法牛頓和線性共軛梯度

故事繼續從選定方向的選定步長講起 首先是下降最快的方向 -- 負梯度方向衍生出來的最速下降法 最速下降法 顧名思義,選擇最快下降。包含兩層意思:選擇下降最快的方向,在這一方向上尋找最好的步長。到達后在下一個點重復該步驟。定方向 選步長 前進... 優化問題的模型:\(min f ...

Thu Dec 30 04:47:00 CST 2021 0 850
最優化問題——梯度下降法

類方法:迭代最優條件:最小二乘估計 3、迭代 (1)梯度下降法(gradient descen ...

Thu Dec 13 06:41:00 CST 2018 0 2374
『科學計算_理論』優化算法:梯度下降法&牛頓

梯度下降法 梯度下降法用來求解目標函數的極值。這個極值是給定模型給定數據之后在參數空間中搜索找到的。迭代過程為: 可以看出,梯度下降法更新參數的方式為目標函數在當前參數取值下的梯度值,前面再加上一個步長控制參數alpha。梯度下降法通常用一個三維圖來展示,迭代過程就好像在不斷地下坡,最終 ...

Wed Jul 12 01:53:00 CST 2017 0 1238
優化方法總結:梯度下降法牛頓、擬牛頓、共軛梯度等等

概述 優化問題就是在給定限制條件下尋找目標函數\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的極值點。極值可以分為整體極值或局部極值,整體極值即函數的最大/最小值,局部極值就是函數在有限鄰域內的最大/最小值。通常都希望能求得函數的整體 ...

Thu Apr 06 08:18:00 CST 2017 0 4302
梯度下降法牛頓的總結與比較

機器學習的本質是建立優化模型,通過優化方法,不斷迭代參數向量,找到使目標函數最優的參數向量。最終建立模型 通常用到的優化方法:梯度下降方法、牛頓、擬牛頓等。這些優化方法的本質就是在更新參數。 一、梯度下降法   0、梯度下降的思想 ·    通過搜索方向和步長來對參數進行更新。其中搜索 ...

Wed May 09 03:36:00 CST 2018 3 10861
梯度下降法牛頓的比較

參考知乎:https://www.zhihu.com/question/19723347 這篇博文講牛頓講的非常好:http://blog.csdn.net/itplus/article/details/21896453 梯度下降法 ...

Wed Oct 12 05:49:00 CST 2016 0 2053
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM