原文:交叉驗證(簡單交叉驗證、k折交叉驗證、留一法)

針對經驗風險最小化算法的過擬合的問題,給出交叉驗證的方法,這個方法在做分類問題時很常用: 一:簡單的交叉驗證的步驟如下: 從全部的訓練數據 S中隨機選擇 中隨機選擇 s的樣例作為訓練集 train,剩余的 作為測試集 作為測試集 test。 通過對測試集訓練 ,得到假設函數或者模型 。 在測試集對每一個樣本根據假設函數或者模型,得到訓練集的類標,求出分類正確率。 ,選擇具有最大分類率的模型或者假設 ...

2016-05-11 11:57 1 25599 推薦指數:

查看詳情

K交叉驗證

交叉驗證的思想   交叉驗證主要用於防止模型過於復雜而引起的過擬合,是一種評價訓練數據的數據集泛化能力的統計方法。其基本思想是將原始數據進行划分,分成訓練集和測試集,訓練集用來對模型進行訓練,測試集用來測試訓練得到的模型,以此來作為模型的評價指標。 簡單交叉驗證   將原始數據D按比例划分 ...

Sun Jun 02 04:59:00 CST 2019 0 2668
K交叉驗證

在機器學習領域,特別是涉及到模型的調參與優化部分,k交叉驗證是一個經常使用到的方法,本文就結合示例對它做一個簡要介紹。 該方法的基本思想就是將原訓練數據分為兩個互補的子集,一部分做為訓練數據來訓練模型,另一部分做為驗證數據來評價模型。(以下將前述的兩個子集的並集稱為原訓練集,將它的兩個互補子集 ...

Wed Feb 12 23:00:00 CST 2020 0 5041
k交叉驗證

k交叉驗證(R語言) 原創: 三貓 機器學習養成記 2017-11-26 “ 機器學習中需要把數據分為訓練集和測試集,因此如何划分訓練集和測試集就成為影響模型效果的重要因素。本文介紹一種常用的划分最優訓練集和測試集的方法——k交叉驗證。” k交叉驗證 ...

Wed Jun 06 04:47:00 CST 2018 0 6938
K交叉驗證

k 交叉驗證k-fold cross validation) 靜態的「留出」對數據的划分方式比較敏感,有可能不同的划分方式得到了不同的模型。「k 交叉驗證」是一種動態驗證的方式,這種方式可以降低數據划分帶來的影響。具體步驟如下: 將數據集分為訓練集和測試集,將測試集放在一邊 將訓練集 ...

Sat Sep 25 04:14:00 CST 2021 0 138
K交叉驗證的目的

K交叉驗證,其主要 的目的是為了選擇不同的模型類型(比如一次線性模型、非線性模型),而不是為了選擇具體模型的具體參數。比如在BP神經網絡中,其目的主要為了選擇模型的層數、神經元的激活函數、每層模型的神經元個數(即所謂的超參數)。每一層網絡神經元連接的最終權重是在模型選擇(即K交叉驗證)之后 ...

Wed Sep 16 01:54:00 CST 2020 0 932
交叉驗證/K交叉驗證, python代碼到底怎么寫

交叉驗證: 把數據平均分成5等份,每次實驗拿一份做測試,其余用做訓練。實驗5次求平均值。如上圖,第一次實驗拿第一份做測試集,其余作為訓練集。第二次實驗拿第二份做測試集,其余做訓練集。依此類推~ 但是,道理都挺簡單的,但是代碼我就不會寫,比如我怎么把數據平均分成5份 ...

Fri Dec 10 18:06:00 CST 2021 0 1686
交叉驗證和普通交叉驗證有什么區別?

總結1: 其實就是樣本量較小時使用的交叉驗證,算是普通交叉驗證的極端情況,即將所有N個樣本分成N份,再進行交叉驗證。 總結2: k fold,就是把training data 折成k份(k<=N)進行交叉驗證k = N 即一(LOOCV ...

Thu May 11 18:06:00 CST 2017 0 6128
k交叉驗證KFold()函數的使用

KFold(n_split, shuffle, random_state)   參數:n_splits:要划分的數      shuffle: 每次都進行shuffle,測試集中數的總和就是訓練集的個數      random_state:隨機狀態 from ...

Thu Mar 19 05:15:00 CST 2020 0 1690
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM