第二章 模型評估與選擇 2.1 經驗誤差與過擬合 錯誤率(error rate):分類錯誤的樣本數占樣本總數的比例。 精度(accuracy):1 - 錯誤率 誤差(error):學習器的實際預測輸出與樣本的真實輸出之間的差異稱為誤差。 訓練誤差 ...
. 學習模型的評估與選擇 Content . 學習模型的評估與選擇 . 如何調試學習算法 . 評估假設函數 Evaluating a hypothesis . 模型選擇與訓練 驗證 測試集 Model selection and training validation test sets . 偏差與方差 . . Diagnosing bias vs. variance. . . 正則化與偏差 方 ...
2016-04-17 00:24 1 11111 推薦指數:
第二章 模型評估與選擇 2.1 經驗誤差與過擬合 錯誤率(error rate):分類錯誤的樣本數占樣本總數的比例。 精度(accuracy):1 - 錯誤率 誤差(error):學習器的實際預測輸出與樣本的真實輸出之間的差異稱為誤差。 訓練誤差 ...
目錄 1、簡介 1.1 訓練誤差和測試誤差 1.2、過擬合與欠擬合 2、模型選擇 2.1、正則化 2.2、簡單交叉驗證 2.3、S折交叉驗證 2.4、自助方法 3、模型評估 ...
二、機器學習模型評估 2.1 模型評估:基本概念 錯誤率(Error Rate) 預測錯誤的樣本數a占樣本總數的比例m \[E=\frac{a}{m} \] 准確率(Accuracy) 准確率=1-錯誤率准確率=1−錯誤率 誤差 ...
'沒有測量,就沒有科學'這是科學家門捷列夫的名言。在計算機科學特別是機器學習領域中,對模型的評估同樣至關重要,只有選擇與問題相匹配的評估方法,才能快速地發現模型選擇或訓練過程中出現的問題,迭代地對模型進行優化。模型評估主要分為離線評估和在線評估兩個階段。針對分類、排序、回歸、序列預測等不同類 ...
1、損失函數和風險函數 (1)損失函數:常見的有 0-1損失函數 絕對損失函數 平方損失函數 對數損失函數 (2)風險函數:損失函數的期望 經驗風險:模型在數據集T上的平均損失 根據大數定律,當N趨向於∞時,經驗風險趨向於風險函數 2、模型評估方法 (1)訓練誤差 ...
【第2章 模型評估與選擇】 〖一、知識點歸納〗 一、經驗誤差與過擬合 【分類】:對是離散值的結果進行預測。 【回歸】:對是連續值的結果進行預測。 分類和回歸屬於監督學習。 【錯誤率】:分類錯誤的樣本數占樣本總數的比例。 eg:m個樣本中有 ...
線性回歸: 可以用損失函數來評估模型,這個損失函數可以選擇平方損失函數, 將所有樣本的x和y代入, 只要損失函數最小,那么得到的參數就是模型參數 邏輯回歸: 可以使用似然概率來評估模型,將所有樣本的x和y代入, 只要這個似然概率最大,那么得到的參數,就是模型參數 常見的損失函數 機器學習 ...
一、模型的評估方法 (1)留出法:顧名思義,就是留出一部分作為測試樣本。將已知的數據集分成兩個互斥的部分,其中一部分用來訓練模型,另一部分用來測試模型,評估其誤差,作為泛化誤差的估計。 注意:(1) 兩個數據集的划分要盡可能保持數據分布的一致性,避免因數據划分過程引入人為的偏差 ...