不多說,直接上干貨! 機器學習無疑是當前數據分析領域的一個熱點內容。很多人在平時的工作中都或多或少會用到機器學習的算法。本文總結一下常見的機器學習算法,以供參考。機器學習的算法很多,很多算法是一類算法,而有些算法又是從其他算法中延伸出來的。 這里從兩個方面 ...
考慮一個二分問題,即將實例分成正類 positive 或負類 negative 。對一個二分問題來說,會出現四種情況。如果一個實例是正類並且也被 預測成正類,即為真正類 True positive ,如果實例是負類被預測成正類,稱之為假正類 False positive 。相應地,如果實例是負類被預測成負類,稱之為真負類 True negative ,正類被預測成負類則為假負類 false ne ...
2016-04-10 20:04 8 25536 推薦指數:
不多說,直接上干貨! 機器學習無疑是當前數據分析領域的一個熱點內容。很多人在平時的工作中都或多或少會用到機器學習的算法。本文總結一下常見的機器學習算法,以供參考。機器學習的算法很多,很多算法是一類算法,而有些算法又是從其他算法中延伸出來的。 這里從兩個方面 ...
序言 在機器學習中,性能指標(Metrics)是衡量一個模型好壞的關鍵,通過衡量模型輸出y_predict 和 y_true之間的某種"距離"得出的。 性能指標往往是我們做模型時的最終目標,如准確率,召回率,敏感度等等,但是性能指標常常因為不可微分,無法作為優化的loss函數,因此采用 ...
共有以下幾種評價指標: 其中,僅輪廓系數比較合理,別的不過是牽強附會罷了,就差欺世盜名了。 混淆矩陣均- -性完整性V-measure調整蘭德系數(ARI)調整互信息(AMI)輪廓系數(Silhouette) 輪廓系數: ...
一、常用分類算法的優缺點 二、正確率能很好的評估分類算法嗎 不同算法有不同特點,在不同數據集上有不同的表現效果,根據特定的任務選擇不同的算法。如何評價分類算法的好壞,要做具體任務具體分析。對於決策樹,主要用正確率去評估,但是其他算法,只用正確率能很好的評估嗎? 答案是否定的。 正確率確實 ...
//2019.08.14#機器學習算法評價分類結果1、機器學習算法的評價指標一般有很多種,對於回歸問題一般有MAE,MSE,AMSE等指標,而對於分類算法的評價指標則更多:准確度score,混淆矩陣、精准率、召回率以及ROC曲線、PR曲線等。2、對於分類算法只用准確率的評價指標是不夠 ...
機器學習分為三個階段: 第一階段:學習模型。采用學習算法,通過對訓練集進行歸納學習得到分類模型; 第二階段:測試模型。將已經學習得到的分類模型用於測試集,對測試集中未知類別的實例進行分類。 第三階段:性能評估。顯然,通過測試集產生的分類未必是最佳的,這就導致對測試集的分類 ...
常用機器學習算法包括分類、回歸、聚類等幾大類型,以下針對不同模型總結其評估指標 一、分類模型 常見的分類模型包括:邏輯回歸、決策樹、朴素貝葉斯、SVM、神經網絡等,模型評估指標包括以下幾種: (1)二分類問題 (a)混淆矩陣 准確率A:預測正確個數占總數的比例 ...
本文對機器學習模型評估指標進行了完整總結。機器學習的數據集一般被划分為訓練集和測試集,訓練集用於訓練模型,測試集則用於評估模型。針對不同的機器學習問題(分類、排序、回歸、序列預測等),評估指標決定了我們如何衡量模型的好壞 一、Accuracy 准確率是最簡單的評價指標,公式 ...