數據的導入 > data=read.csv('F:/R語言工作空間/pca/data.csv') #數據的導入> > ls(data) #ls()函數列出所有變量 [1] "X" "不良貸款率" "存貸款比率" "存款增長率" "貸款增長率" "流動比率" "收入利潤率 ...
主成分分析 principal component analysis,PCA 是一種降維技術,把多個變量化為能夠反映原始變量大部分信息的少數幾個主成分。設X有p個變量,為n p階矩陣,即n個樣本的p維向量。首先對X的p個變量尋找正規化線性組合,使它的方差達到最大,這個新的變量稱為第一主成分,抽取第一主成分后,第二主成分的抽取方法與第一主成分一樣,依次類推,直到各主成分累積方差達到總方差的一定比例。 ...
2016-04-09 12:47 0 3205 推薦指數:
數據的導入 > data=read.csv('F:/R語言工作空間/pca/data.csv') #數據的導入> > ls(data) #ls()函數列出所有變量 [1] "X" "不良貸款率" "存貸款比率" "存款增長率" "貸款增長率" "流動比率" "收入利潤率 ...
主成分分析原理與實現 主成分分析是一種矩陣的壓縮算法,在減少矩陣維數的同時盡可能的保留原矩陣的信息,簡單來說就是將 \(n×m\)的矩陣轉換成\(n×k\)的矩陣,僅保留矩陣中所存在的主要特性,從而可以大大節省空間和數據量。最近課上學到這個知識,感覺很有意思,就在網上找一些博客 ...
PCA(principle component analysis) 。主成分分析,主要是用來減少數據集 ...
關於PCA的詳細說明,參見:http://blog.sina.com.cn/s/blog_61b8694b0101jg4f.html 在此,我把我所用的matlab實現代碼列舉在此,比較簡潔,並附有詳細的注釋。 訓練數據的PCA處理: function [ mu,sigma,coeff ...
原文地址:https://www.cnblogs.com/xinyuyang/p/11178676.html 主成分分析原理與實現 主成分分析是一種矩陣的壓縮算法,在減少矩陣維數的同時盡可能的保留原矩陣的信息,簡單來說就是將 n×m">n×mn×m的矩陣轉換成 ...
PCA(Principal Components Analysis)主成分分析是一個簡單的機器學習算法,利用正交變換把由線性相關變量表示的觀測數據轉換為由少量線性無關比變量表示的數據,實現降維的同時盡量減少精度的損失,線性無關的變量稱為主成分。大致流程如下: 首先對給定數據集(數據是向量 ...
基本概念 主成分分析(Principal Component Analysis, PCA)是研究如何將多指標問題轉化為較少的綜合指標的一種重要的統計方法,它能將高維空間的問題轉化到低維空間去處理,使問題變得比較簡單、直觀,而且這些較少的綜合指標之間互不相關,又能提供原有指標的絕大部分 ...
一.定義 主成分分析(principal components analysis)是一種無監督的降維算法,一般在應用其他算法前使用,廣泛應用於數據預處理中。其在保證損失少量信息的前提下,把多個指標轉化為幾個綜合指標的多元統計方法。這樣可達到簡化數據結構,提高分信息效率的目的。 通常 ...