網易公開課,第6,7,8課 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量機算法概述, 這篇講的挺好,可以參考 先繼續前面對線性分類器的討論, 通過機器學習算法找到的線性分類的線,不是唯一的,對於一個訓練集 ...
支持向量機 Support Vector Machine, SVM 考慮logistic回歸,對於 y 的數據,我們希望其 h theta x approx ,相應的 theta Tx gg 對於 y 的數據,我們希望 h theta x approx ,相應的 theta Tx ll 。每個數據點的代價為: left y log h theta x y log h theta x right 當 ...
2016-01-13 22:33 0 2489 推薦指數:
網易公開課,第6,7,8課 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量機算法概述, 這篇講的挺好,可以參考 先繼續前面對線性分類器的討論, 通過機器學習算法找到的線性分類的線,不是唯一的,對於一個訓練集 ...
多元線性回歸 一元線性回歸只有一個特征$x$,而多元線性回歸可以有多個特征$x_1, x_2, \ldots, x_n$ 假設 (Hypothesis):$h_\theta(x)=\theta^T ...
Logistic 回歸 通常是二元分類器(也可以用於多元分類),例如以下的分類問題 Email: spam / not spam Tumor: Malignant / benign ...
機器學習目前比較熱,網上也散落着很多相關的公開課和學習資源,這里基於課程圖譜的機器學習公開課標簽做一個匯總整理,便於大家參考對比。 1、Coursera上斯坦福大學Andrew Ng教授的“機器學習公開課”: 機器學習入門課程首選,斯坦福大學教授,Coursera聯合創始人 ...
初步介紹 監督式學習: 給定數據集並且知道其正確的輸出應該是怎么樣的,即有反饋(feedback),分為 回歸 (Regressioin): map輸入到連續的輸出值。 分類 (Classification):map輸出到離散的輸出值。 非監督式學習: 給定數據集,並不知道 ...
批梯度下降 (Batch Gradient Descent) 以線性回歸為例,用梯度下降算法進行參數更新的公式為$$\theta_j=\theta_j-\alpha\frac{1}{m}\sum\l ...
這一章可能是Andrew Ng講得最不清楚的一章,為什么這么說呢?這一章主要講后向傳播(Backpropagration, BP)算法,Ng花了一大半的時間在講如何計算誤差項$\delta$,如何計算 ...
在有監督學習里面有幾個邏輯上的重要組成部件[3],初略地分可以分為:模型,參數 和 目標函數。(此部分轉自 XGBoost 與 Boosted Tree) 一、模型和參數 模型指給定輸入xi如何去預測 輸出 yi。我們比較常見的模型如線性模型(包括線性回歸和logistic ...