=x^2$在點$x=0$的梯度方向,也是唯一的次梯度方向。上面右圖的三條紅線都是函數$y=|x|$在點$ ...
次梯度方法 次梯度方法 subgradient method 是傳統的梯度下降方法的拓展,用來處理不可導的凸函數。它的優勢是比傳統方法處理問題范圍大,劣勢是算法收斂速度慢。但是,由於它對不可導函數有很好的處理方法,所以學習它還是很有必要的。 次梯度 subgradient .定義 所謂次梯度,定義是這樣的: partial f g f x ge f x g T x x , forall x in ...
2015-09-10 11:12 5 16341 推薦指數:
=x^2$在點$x=0$的梯度方向,也是唯一的次梯度方向。上面右圖的三條紅線都是函數$y=|x|$在點$ ...
Start with the SVD decomposition of $x$: $$x=U\Sigma V^T$$ Then $$\|x\|_*=tr(\sqrt{x^Tx})=tr(\sqrt ...
在上一篇博客中,我們介紹了次梯度,本篇博客,我們將用它來求解優化問題。 優化目標函數: $min \frac{1}{2} ||Ax-b||_2^2+\mu ||x||_1$ 已知$A, b$,設定一個$\mu$值,此優化問題表示用數據矩陣$A$的列向量的線性組合去擬合目標向量$b$,並且解 ...
拉格朗日 次梯度法(轉) https://blog.csdn.net/robert_chen1988/article/details/41074295 對於非線性約束問題: 若非線性約束難於求導,則不能用K-T求解該問題,可考慮用拉格朗日次梯度法 ...
Using subgradient method to solve lasso problem The problem is to solve: \[\underset{\beta}{\op ...
或最大化函數的 x 值。如我們記 x ∗ =argminf(x) 2.梯度下降(gradient des ...
序言 對於y=f(wx+b),如何使用神經網絡來進行求解,也就是給定x和y的值,如何讓系統自動生成正確的權重值w和b呢? 一般情況下,有兩種嘗試方法: 1) 隨機試:純概率問題,幾乎不可能實現。 2) 梯度下降法:先初始化w和b(可以隨機 ...
梯度下降法(最速下降法): 求解無約束最優化問題的一種最常用的方法,當目標函數是凸函數時,梯度下降法的解是全局最優解.一般情況下,其解不保證是全局最優解.梯度下降法的收斂速度也未必是很快 ...