原文:斯坦福CS229機器學習課程筆記六:學習理論、模型選擇與正則化

稍微了解有監督機器學習的人都會知道,我們先通過訓練集訓練出模型,然后在測試集上測試模型效果,最后在未知的數據集上部署算法。然而,我們的目標是希望算法在未知的數據集上有很好的分類效果 即最低的泛化誤差 ,為什么訓練誤差最小的模型對控制泛化誤差也會有效呢 這一節關於學習理論的知識就是讓大家知其然也知其所以然。 學習理論 .empirical riskminimization 經驗風險最小化 假設有m個 ...

2015-08-26 17:20 0 2533 推薦指數:

查看詳情

斯坦福CS229機器學習課程筆記一:線性回歸與梯度下降算法

應該是去年的這個時候,我開始接觸機器學習的相關知識,當時的入門書籍是《數據挖掘導論》。囫圇吞棗般看完了各個知名的分類器:決策樹、朴素貝葉斯、SVM、神經網絡、隨機森林等等;另外較為認真地復習了統計學,學習了線性回歸,也得以通過orange、spss、R做一些分類預測工作。可是對外說自己是搞機器學習 ...

Thu Jul 16 22:26:00 CST 2015 0 3874
斯坦福CS229機器學習課程筆記二:GLM廣義線性模型與Logistic回歸

一直聽聞Logistic Regression邏輯回歸的大名,比如吳軍博士在《數學之美》中提到,Google是利用邏輯回歸預測搜索廣告的點擊率。因為自己一直對個性廣告感興趣,於是瘋狂google過邏輯回歸的資料,但沒有一個網頁資料能很好地講清到底邏輯回歸是什么。幸好,在CS229第三節課介紹 ...

Thu Jul 16 23:11:00 CST 2015 0 4358
斯坦福CS229機器學習課程筆記五:支持向量機 Support Vector Machines

SVM被許多人認為是有監督學習中最好的算法,去年的這個時候我就在嘗試學習。不過,面對長長的公式和拗口的中文翻譯最終放棄了。時隔一年,看到Andrew講解SVM,總算對它有了較為完整的認識,總體思路是這樣的:1.介紹間隔的概念並重新定義符號;2.分別介紹functional margins ...

Fri Jul 31 21:48:00 CST 2015 0 1942
斯坦福機器學習視頻筆記 Week3 邏輯回歸與正則化 Logistic Regression and Regularization

我們將討論邏輯回歸。 邏輯回歸是一種將數據分類為離散結果的方法。 例如,我們可以使用邏輯回歸將電子郵件分類為垃圾郵件或非垃圾郵件。 在本模塊中,我們介紹分類的概念,邏輯回歸的損失函數(cost functon),以及邏輯回歸對多分類的應用。 我們還涉及正規機器學習模型需要很好地推廣到模型 ...

Fri Jan 27 06:58:00 CST 2017 0 3775
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM