上篇文章介紹了最小二乘法的理論與證明、計算過程,這里給出兩個最小二乘法的計算程序代碼; #Octave代碼 clear all;close all; % 擬合的數據集 x = [2;6;9;13]; y = [4;8;12;21]; % 數據長度 N = length(x); % 3 %% 計算x ...
Cholesky分解求系數參考: 馮天祥. 多元線性回歸最小二乘法及其經濟分析 J . 經濟師, , : . 還可以采用最小二乘法來估計參數: 算法設計也可以參考兩種系數最終公式設計。 下面的Java代碼由網友設計,采用第一種方法計算參數。 View Code 下面的C 代碼由網友提供,采用第二中方法計算系數。 include lt iostream gt include lt fstream ...
2015-08-22 13:31 0 7316 推薦指數:
上篇文章介紹了最小二乘法的理論與證明、計算過程,這里給出兩個最小二乘法的計算程序代碼; #Octave代碼 clear all;close all; % 擬合的數據集 x = [2;6;9;13]; y = [4;8;12;21]; % 數據長度 N = length(x); % 3 %% 計算x ...
目錄 一、線性回歸 二、最小二乘法 三、最小二乘法(向量表示) 四、Python實現 一、線性回歸 給定由n個屬性描述的樣本x=(x0, x1, x2, ... , xn),線性模型嘗試學習一個合適的樣本屬性的線性組合來進行預測任務,如:f(x ...
線性回歸:是利用數理統計中回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法。 梯度下降,http://www.cnblogs.com/hgl0417/p/5893930.html 最小二乘: 對於一般訓練集 ...
線性回歸之最小二乘法 1.最小二乘法的原理 最小二乘法的主要思想是通過確定未知參數\(\theta\)(通常是一個參數矩陣),來使得真實值和預測值的誤差(也稱殘差)平方和最小,其計算公式為\(E=\sum_{i=0}^ne_i^2=\sum_{i=1}^n(y_i-\hat{y_i ...
回歸: 所以從這里我們開始將介紹線性回歸的另一種更方便求解多變量線性回歸的方式:最小二乘法矩陣形 ...
相信學過數理統計的都學過線性回歸(linear regression),本篇文章詳細將講解單變量線性回歸並寫出使用最小二乘法(least squares method)來求線性回歸損失函數最優解的完整過程,首先推導出最小二乘法,后用最小二乘法對一個簡單數據集進行線性回歸擬合; 線性回歸 ...
個人記錄,大部分摘自概率論與數理統計 一元線性回歸模型 設y與x間有相關關系,稱x為自變量,y為因變量,我們只考慮在x是可控變量,只有y是隨機變量,那么他們之間的相關關系可以表示為 y=f(x)+ε 其中ε是隨機誤差,一般假設ε~N(0,σ2)。由於ε是隨機變量,導致y也是隨機變量 ...
下面展示利用Python實現基於最小二乘法的線性回歸模型,同時不需要引入其他科學計算以及機器學習的庫。 利用Python代碼表示如下: #首先引入數據集x,和y的值的大小利用Python的數據結構:列表,來實現。 y ...