原文:斯坦福CS229機器學習課程筆記二:GLM廣義線性模型與Logistic回歸

一直聽聞LogisticRegression邏輯回歸的大名,比如吳軍博士在 數學之美 中提到,Google是利用邏輯回歸預測搜索廣告的點擊率。因為自己一直對個性化廣告感興趣,於是瘋狂google過邏輯回歸的資料,但沒有一個網頁資料能很好地講清到底邏輯回歸是什么。幸好,在CS 第三節課介紹了邏輯回歸,第四節課介紹了廣義線性模型,綜合起來總算讓我對邏輯回歸有了一定的理解。與課程的順序相反,我認為應該先 ...

2015-07-16 15:11 0 4358 推薦指數:

查看詳情

斯坦福CS229機器學習課程筆記一:線性回歸與梯度下降算法

應該是去年的這個時候,我開始接觸機器學習的相關知識,當時的入門書籍是《數據挖掘導論》。囫圇吞棗般看完了各個知名的分類器:決策樹、朴素貝葉斯、SVM、神經網絡、隨機森林等等;另外較為認真地復習了統計學,學習線性回歸,也得以通過orange、spss、R做一些分類預測工作。可是對外說自己是搞機器學習 ...

Thu Jul 16 22:26:00 CST 2015 0 3874
斯坦福CS229機器學習課程筆記六:學習理論、模型選擇與正則化

稍微了解有監督機器學習的人都會知道,我們先通過訓練集訓練出模型,然后在測試集上測試模型效果,最后在未知的數據集上部署算法。然而,我們的目標是希望算法在未知的數據集上有很好的分類效果(即最低的泛化誤差),為什么訓練誤差最小的模型對控制泛化誤差也會有效呢?這一節關於學習理論的知識就是讓大家知其然也知 ...

Thu Aug 27 01:20:00 CST 2015 0 2533
斯坦福CS229機器學習課程筆記五:支持向量機 Support Vector Machines

SVM被許多人認為是有監督學習中最好的算法,去年的這個時候我就在嘗試學習。不過,面對長長的公式和拗口的中文翻譯最終放棄了。時隔一年,看到Andrew講解SVM,總算對它有了較為完整的認識,總體思路是這樣的:1.介紹間隔的概念並重新定義符號;2.分別介紹functional margins ...

Fri Jul 31 21:48:00 CST 2015 0 1942
機器學習 —— 基礎整理(五)線性回歸;二項Logistic回歸;Softmax回歸及其梯度推導;廣義線性模型

本文簡單整理了以下內容: (一)線性回歸 (二)二分類:二項Logistic回歸 (三)多分類:Softmax回歸 (四)廣義線性模型 閑話:二項Logistic回歸是我去年入門機器學習時學的第一個模型(忘記了為什么看完《統計學習方法》第一章之后直接就跳去了第六章 ...

Sat Apr 22 05:21:00 CST 2017 0 7205
機器學習算法總結(八)——廣義線性模型(線性回歸,邏輯回歸)

  邏輯回歸線性回歸都是廣義線性模型中的一種,接下來我們來解釋為什么是這樣的? 1、指數族分布   指數族分布和指數分布是不一樣的,在概率統計中很對分布都可以用指數族分布來表示,比如高斯分布、伯努利分布、多項式分布、泊松分布等。指數族分布的表達式如下      其中&#x03B7 ...

Mon Jul 09 16:59:00 CST 2018 0 917
logistic回歸廣義線性模型

logistic回歸:   logistic回歸一般是用來解決二元分類問題,它是從貝努力分布轉換而來的   hθ(x) = g(z)=1/1+e-z ;z=θTx   最大似然估計L(θ) = p(Y|X;θ)            =∏p(y(i)|x(i ...

Sun Jan 06 08:15:00 CST 2013 3 2368
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM