一、標准化(Z-Score),或者去除均值和方差縮放 公式為:(X-mean)/std 計算時對每個屬性/每列分別進行。 將數據按期屬性(按列進行)減去其均值,並處以其方差。得到的結果是,對於每個屬性/每列來說所有數據都聚集在0附近,方差為1。 實現時,有兩種不同的方式: 使用 ...
關於缺失值 missing value 的處理 在sklearn的preprocessing包中包含了對數據集中缺失值的處理,主要是應用Imputer類進行處理。 首先需要說明的是,numpy的數組中可以使用np.nan np.NaN Not A Number 來代替缺失值,對於數組中是否存在nan可以使用np.isnan 來判定。 使用type np.nan 或者type np.NaN 可以發現 ...
2014-12-09 14:12 1 27900 推薦指數:
一、標准化(Z-Score),或者去除均值和方差縮放 公式為:(X-mean)/std 計算時對每個屬性/每列分別進行。 將數據按期屬性(按列進行)減去其均值,並處以其方差。得到的結果是,對於每個屬性/每列來說所有數據都聚集在0附近,方差為1。 實現時,有兩種不同的方式: 使用 ...
一.畫圖查看缺失值分布情況 方法1 方法2 缺失值高亮 二. 缺失值處理方式 依據業務邏輯和缺失值占比,目標保證對預測結果影響越小越好 1. 占比較多:如80%以上,刪除缺失值所在列(如果對字段有特殊需求,那就刪除樣本,前提是樣本足夠 ...
由於各種原因,現實世界中的許多數據集都包含缺失值,通常把缺失值編碼為空白,NaN或其他占位符。但是,此類數據集與scikit-learn估計器不兼容,這是因為scikit-learn的估計器假定數組中的所有值都是數字,並且都存在有價值的含義。如果必須使用不完整數據集,那么處理缺失數據的基本策略 ...
(4)—數據預處理 5.使用sklearn進行數據挖掘-房價預測(5)—訓練模型 6.使用sklear ...
1.處理缺失值方法 在pandas中,將缺失值稱為NA,意思是not available(不可用) pandas在處理缺失值時,我們先了解相關函數介紹。 NA處理方法: 函數名 描述 dropna 根據每個標簽的值 ...
缺失值的類型 首先對數據的變量(特征)按照缺失和不缺失進行分類:不含有缺失值的變量稱為完全變量,含有缺失值的變量稱為非完全變量。 缺失值的類型分為三種:完全隨機缺失,隨機缺失和非隨機缺失。 完全隨機缺失: 缺失的變量和其余的變量沒有關系。比如”家庭住址“這個信息,和”身高“等其余的變量 ...
的對象,熱卡填充法在完整數據中找到一個與它最相似的對象,然后用這個相似對象的值來進行填充。通常會找到超出 ...
在真實的世界中,缺失數據是經常出現的,並可能對分析的結果造成影響。我們需要了解數據缺失的原因和數據缺失的類型,並從數據中識別缺失值,探索數據缺失的模式,進而處理缺失的數據。本文概述處理數據缺失的方法。 一,數據缺失的原因 首先我們應該知道:數據為什么缺失?數據的缺失是我們無法避免的,可能的原因 ...