以前對PCA算法有過一段時間的研究,但沒整理成文章,最近項目又打算用到PCA算法,故趁熱打鐵整理下PCA算法的知識。本文觀點旨在拋磚引玉,不是權威,更不能盡信,只是本人的一點體會。 主成分分析(PCA)是多元統計分析中用來分析數據的一種方法,它是用一種較少數量的特征對樣本進行描述以達到降低 ...
以前對PCA算法有過一段時間的研究,但沒整理成文章,最近項目又打算用到PCA算法,故趁熱打鐵整理下PCA算法的知識。本文觀點旨在拋磚引玉,不是權威,更不能盡信,只是本人的一點體會。 主成分分析 PCA 是多元統計分析中用來分析數據的一種方法,它是用一種較少數量的特征對樣本進行描述以達到降低特征空間維數的方法,它的本質實際上是K L變換。PCA方法最著名的應用應該是在人臉識別中特征提取及數據維,我們 ...
2014-11-24 20:06 0 21390 推薦指數:
以前對PCA算法有過一段時間的研究,但沒整理成文章,最近項目又打算用到PCA算法,故趁熱打鐵整理下PCA算法的知識。本文觀點旨在拋磚引玉,不是權威,更不能盡信,只是本人的一點體會。 主成分分析(PCA)是多元統計分析中用來分析數據的一種方法,它是用一種較少數量的特征對樣本進行描述以達到降低 ...
PCA(Principal Components Analysis),它是一種“投影(projection)技巧”,就是把高維空間上的數據映射到低維空間。比如三維空間的一個球,往坐標軸方向投影,變成了一個圓。球是3維的,圓是2維的。在球變成圓的這個投影過程中,丟失了原來物體(球)的一部分“性質 ...
一、理論概述 1)問題引出 先看如下幾張圖: 從上述圖中可以看出,如果將3個圖的數據點投影到x1軸上,圖1的數據離散度最高,圖3其次,圖2最小。數據離散性越大,代表數據在所投影的維度上具 ...
有一個方法可以將它降到一維,二維或者人類的三維?確實有這種方法。 主成分分析(PCA)就是專門解決這個問 ...
這篇文章很不錯:https://blog.csdn.net/u013082989/article/details/53792010 為什么數據處理之前要進行歸一化???(這個一直不明白) ...
。 ====================================== 主成分分析( ...
PCA(Principal Components Analysis)主成分分析是一個簡單的機器學習算法,利用正交變換把由線性相關變量表示的觀測數據轉換為由少量線性無關比變量表示的數據,實現降維的同時盡量減少精度的損失,線性無關的變量稱為主成分。大致流程如下: 首先對給定數據集(數據是向量 ...
基本概念 主成分分析(Principal Component Analysis, PCA)是研究如何將多指標問題轉化為較少的綜合指標的一種重要的統計方法,它能將高維空間的問題轉化到低維空間去處理,使問題變得比較簡單、直觀,而且這些較少的綜合指標之間互不相關,又能提供原有指標的絕大部分 ...