BP神經網絡的手寫數字識別 ANN 人工神經網絡算法在實踐中往往給人難以琢磨的印象,有句老話叫“出來混總是要還的”,大概是由於具有很強的非線性模擬和處理能力,因此作為代價上帝讓它“黑盒”化了。作為一種general purpose的學**算法,如果你實在不想去理會 ...
一:人工神經網絡 人類之所以能夠思考,學習,判斷,大部分都要歸功於人腦中復雜的神經網絡。雖然現在人腦的機理還沒有完全破譯,但是人腦中神經元之間的連接,信息的傳遞都已為人所知曉。於是人們就想能否模擬人腦的功能用於解決其他問題,這就發展出人工神經網絡。 人工神經網絡 artificial neural network,縮寫ANN ,是一種模仿生物神經網絡的結構和功能的數學模型或計算模型。神經網絡由大量 ...
2014-10-28 22:56 0 2172 推薦指數:
BP神經網絡的手寫數字識別 ANN 人工神經網絡算法在實踐中往往給人難以琢磨的印象,有句老話叫“出來混總是要還的”,大概是由於具有很強的非線性模擬和處理能力,因此作為代價上帝讓它“黑盒”化了。作為一種general purpose的學**算法,如果你實在不想去理會 ...
一.BP神經網絡原理及結構 本片博客偏向於BP神經網絡的MATLAB程序實現講解,詳細原理請參考:http://www.cnblogs.com/wentingtu/archive/2012/06/05/2536425.html 1.神經元 神經 ...
導入依賴 下載數據集 mnist數據集是一個公共的手寫數字數據集,一共有7W張28*28像素點的0-9手寫數字圖片和標簽,其中有6W張是訓練集,1W張是測試集。 其中,x_train為訓練集特征,y_train為訓練集標簽,x_test為測試集特征 ...
1實驗環境 實驗環境:CPU i7-3770@3.40GHz,內存8G,windows10 64位操作系統 實現語言:python 實驗數據:Mnist數據集 程序使用的數據庫是mnist手寫數字數據庫,數據庫有兩個版本,一個是別人做好的.mat格式,訓練數據有60000條,每條是一個 ...
1.1 感知器 感知器的輸出為: wj為權重,表示相應輸入對輸出的重要性; threshold為閾值,決定神經元的輸出為0或1。 也可用下式表示: 其中b=-threshold,稱為感知器的偏置。 通過學習算法,能夠自動調整人工神經元的權重和偏置。 1.2 ...
從mnist下載手寫數字圖片數據集,圖片為28*28,將每個像素的顏色(0到255)改為(0倒1),將標簽y變為10個長度,若為1,則在1處為1,剩下的都標為0。 接下來搭建CNN 卷積->池化->卷積->池化 使圖片從(1,28,28)-> ...
文章導讀: 1. 本書內容 2. 手寫字體識別 3. 感知機 4. Sigmoid神經元 5. 神經網絡的結構 6. 一個用於手寫數字識別的簡單神經網絡 7. 梯度下降學習算法 8. 數字識別神經網絡的實現 9. 關於深度學習 深度學習算是現在機器學習領域非常熱門的方向 ...
第一小節。 人類的視覺系統是很神奇的。考慮一下下面幾個手寫的數字: 大多數人 ...