/m0_37395228/article/details/80874393 五,優點和缺點 拉格朗 ...
系統:windows 編輯器:eclipse pydev 環境:python . 先是逐步插值,主體十分簡單,關鍵在於算法部分,我運用了二維數組的數據結構來存儲每次迭代后的新值。角標的循環初看可能有些復雜,自己動手走一遍就會很清楚啦 下面的是拉格朗日插值算法,十分簡單,分享借鑒。 ...
2014-09-08 09:35 0 2294 推薦指數:
/m0_37395228/article/details/80874393 五,優點和缺點 拉格朗 ...
拉格朗日插值原理: 拉格朗日插值的具體介紹網址:https://zh.wikipedia.org/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%8F%92%E5%80%BC%E6%B3%95 翻譯成人話就是,該曲線是由多個n次多項式的和構成的,n ...
拉格朗日插值法:是以法國十八世紀數學家約瑟夫·拉格朗日命名的一種多項式插值方法(摘自某度百科) 首先我們需要知道,拉格朗日插值法有何用? 舉例子永遠是最好的方法 比如說,已知下面這幾個點,我想找到一根穿過它們的曲線: \(k+1\)個點是肯定可以確定一個\(k\)次函數 ...
1. 數學原理 對某個多項式函數有已知的k+1個點,假設任意兩個不同的都互不相同,那么應用拉格朗日插值公式所得到的拉格朗日插值多項式為: 其中每個lj(x)為拉格朗日基本多項式(或稱插值基函數),其表達式為: 2. 輕量級實現 利用 直接編寫程序,可以直接插值 ...
下面即為拉格朗日插值法的一個實例 我將文件上傳到,我的資源當中了,可以直接下載,運行 ...
拉格朗日插值 很久很久以前,有一個人叫拉格朗日,他發現了拉格朗日插值,可以求出給出函數 \(f(x)\) 的 \(n+1\) 個點,求出這個函數 \(f(x)\) 的值。 推論: 根據某些定理可知: \(f(x)\equiv f(a)\bmod(x-a)\) 那么我們就可以 ...
的方法,其中比較普及的就是拉格朗日插值。 二,定義 對某個多項式函數,已知有給定的k + ...