網易公開課,第6,7,8課 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量機算法概述, 這篇講的挺好,可以參考 先繼續前面對線性分類器的討論, 通過機器學習算法找到的線性分類的線,不是唯一的,對於一個訓練集 ...
網易公開課,第 , 課 notes,http: cs .stanford.edu notes cs notes .pdf 前面討論了線性回歸問題, 符合高斯分布,使用最小二乘來作為損失函數 下面繼續討論分類問題,分類問題和回歸問題不同在於Y的取值是離散的 我們先討論最簡單的binary classification,即Y的取值只有 和 分類問題一般不會使用回歸模型,因為回歸模型是輸出是連續的,而分 ...
2014-03-28 18:38 1 2723 推薦指數:
網易公開課,第6,7,8課 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量機算法概述, 這篇講的挺好,可以參考 先繼續前面對線性分類器的討論, 通過機器學習算法找到的線性分類的線,不是唯一的,對於一個訓練集 ...
網易公開課,監督學習應用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 線性回歸(Linear Regression) 先看個例子,比如,想用面積和卧室個數來預測房屋的價格 訓練集如下 首先,我們假設為線性模型 ...
Logistic 回歸 通常是二元分類器(也可以用於多元分類),例如以下的分類問題 Email: spam / not spam Tumor: Malignant / benign 假設 (Hypothesis):$$h_\theta(x) = g(\theta^Tx ...
課程設置和內容 視頻課程分為20集,每集72-85分鍾。實體課程大概一周2次,中間還穿插助教上的習題課,大概一個學期的課程。 內容涉及四大部分,分別是:監督學習(2-8集)、學習理論(9集-11集)、無監督學習(12-15集)、強化學習(16-20集)。監督學習和無監督學習,基本上是機器學習 ...
支持向量機(Support Vector Machine, SVM) 考慮logistic回歸,對於$y=1$的數據,我們希望其$h_\theta(x) \approx 1$,相應的$\theta^Tx \gg 0$; 對於$y=0$的數據,我們希望$h_\theta(x) \approx ...
多元線性回歸 一元線性回歸只有一個特征$x$,而多元線性回歸可以有多個特征$x_1, x_2, \ldots, x_n$ 假設 (Hypothesis):$h_\theta(x)=\theta^T ...
機器學習目前比較熱,網上也散落着很多相關的公開課和學習資源,這里基於課程圖譜的機器學習公開課標簽做一個匯總整理,便於大家參考對比。 1、Coursera上斯坦福大學Andrew Ng教授的“機器學習公開課”: 機器學習入門課程首選,斯坦福大學教授,Coursera聯合創始人 ...
Ng的機器學習公開課里也有講到。現在回憶起來,大二看Andrew的視頻的時候心里是有這么一個疙瘩(And ...