Sparse coding: 本節將簡單介紹下sparse coding(稀疏編碼),因為sparse coding也是deep learning中一個重要的分支,同樣能夠提取出數據集很好的特征。本文的內容是參考斯坦福deep learning教程:Sparse Coding ...
前言 本節主要是練習下斯坦福DL網絡教程UFLDL關於Sparse coding那一部分,具體的網頁教程參考:Exercise:Sparse Coding。該實驗的主要內容是從 w個自然圖像的patches中分別采用sparse coding和拓撲的sparse coding方法進行學習,並觀察學習到的這些圖像基圖像的特征。訓練數據時自然圖片IMAGE,在給出的教程網站上有。 實驗基礎 Spar ...
2013-04-16 16:41 66 18947 推薦指數:
Sparse coding: 本節將簡單介紹下sparse coding(稀疏編碼),因為sparse coding也是deep learning中一個重要的分支,同樣能夠提取出數據集很好的特征。本文的內容是參考斯坦福deep learning教程:Sparse Coding ...
前言: 現在來進入sparse autoencoder的一個實例練習,參考Ng的網頁教程:Exercise:Sparse Autoencoder。這個例子所要實現的內容大概如下:從給定的很多張自然圖片中截取出大小為8*8的小patches圖片共10000張,現在需要用sparse ...
前言: 由於在sparse coding模型中求系統代價函數偏導數時需要用到矩陣的范數求導,這在其它模型中應該也很常見,比如說對一個矩陣內的元素值進行懲罰,使其值不能過大,則可以使用F范數(下面將介紹)約束,查閱了下矩陣范數求導的相關資料,本節就簡單介紹下。 首先,網絡上有 ...
前言: 關於Sparse coding目標函數的優化會涉及到矩陣求數問題,因為里面有好多矩陣范數的導數,加上自己對矩陣運算不熟悉,推導前面博文Deep learning:二十六(Sparse coding簡單理解)中關於拓撲(非拓撲的要簡單很多)Sparse coding代價函數 ...
前言: 本次主要是練習下ICA模型,關於ICA模型的理論知識可以參考前面的博文:Deep learning:三十三(ICA模型)。本次實驗的內容和步驟可以是參考UFLDL上的教程:Exercise:Independent Component Analysis。本次實驗完成的內容 ...
前言: 本次是練習2個隱含層的網絡的訓練方法,每個網絡層都是用的sparse autoencoder思想,利用兩個隱含層的網絡來提取出輸入數據的特征。本次實驗驗要完成的任務是對MINST進行手寫數字識別,實驗內容及步驟參考網頁教程Exercise: Implement deep ...
前言: 這節課來學習下Deep learning領域比較出名的一類算法——sparse autoencoder,即稀疏模式的自動編碼。我們知道,deep learning也叫做unsupervised learning,所以這里的sparse autoencoder也應是無監督 ...
:Convolution and Pooling。也可以參考前面的博客:Deep learning:十七(Linear De ...