原文:朴素貝葉斯的學習與分類

概念簡介: 朴素貝葉斯基於貝葉斯定理,它假設輸入隨機變量的特征值是條件獨立的,故稱之為 朴素 。簡單介紹貝葉斯定理: 乍看起來似乎是要求一個概率,還要先得到額外三個概率,有用么 其實這個簡單的公式非常貼切人類推理的邏輯,即通過可以觀測的數據,推測不可觀測的數據。舉個例子,也許你在辦公室內不知道外面天氣是晴天雨天,但是你觀測到有同事帶了雨傘,那么可以推斷外面八成在下雨。 若X 是要輸入的隨機變量,則 ...

2012-09-22 17:52 1 2919 推薦指數:

查看詳情

朴素分類

先上問題吧,我們統計了14天的氣象數據(指標包括outlook,temperature,humidity,windy),並已知這些天氣是否打球(play)。如果給出新一天的氣象指標數據:sunny,c ...

Thu Jul 12 01:20:00 CST 2012 5 19654
[機器學習] 分類 --- Naive Bayes(朴素

Naive Bayes-朴素 Bayes’ theorem(法則) 在概率論和統計學中,Bayes’ theorem(法則)根據事件的先驗知識描述事件的概率。法則表達式如下所示 P(A|B) – 在事件B下事件A發生的條件概率 P(B|A) – 在事件A下事件B發生 ...

Thu Jul 05 00:17:00 CST 2018 0 1673
python機器學習(三)分類算法-朴素

一、概率基礎 概率定義:概率定義為一件事情發生的可能性,例如,隨機拋硬幣,正面朝上的概率。 聯合概率:包含多個條件,且所有條 ...

Wed May 20 19:42:00 CST 2020 0 559
機器學習經典算法之朴素分類

很多人都聽說過原理,在哪聽說過?基本上是在學概率統計的時候知道的。有些人可能會說,我記不住這些概率論的公式,沒關系,我盡量用通俗易懂的語言進行講解。 /*請尊重作者勞動成果,轉載請標明原文鏈接:*/ /* https://www.cnblogs.com/jpcflyer/p ...

Sun Jun 23 02:09:00 CST 2019 4 5633
R語言學習筆記—朴素分類

朴素分類(naive bayesian,nb)源於理論,其基本思想:假設樣本屬性之間相互獨立,對於給定的待分類項,求解在此項出現的情況下其他各個類別出現的概率,哪個最大,就認為待分類項屬於那一類別。郵箱內垃圾郵件的篩選即應用朴素算法。 朴素分類實現的三階 ...

Tue May 01 23:40:00 CST 2018 0 7755
朴素和情感分類

朴素和情感分類 分類問題在人類和機器智能中廣泛應用:郵件分類、作業打分等。這篇博客介紹了朴素方法及其在文本分類方面的應用。其中文本分類的例子采用情感分析,就是從文本中進行情感抽取,並判斷作者對特定事物的態度是積極還是消極,例如影評和書評的分析。情感分析中最簡單的任務是二分類任務,文字 ...

Fri Apr 19 19:30:00 CST 2019 0 1067
朴素分類算法原理

一個簡單的例子 朴素算法是一個典型的統計學習方法,主要理論基礎就是一個公式,公式的基本定義如下: 這個公式雖然看上去簡單,但它卻能總結歷史,預知未來。公式的右邊是總結歷史,公式的左邊是預知未來,如果把Y看出類別,X看出特征,P(Yk|X)就是在已知特征X ...

Fri May 05 03:21:00 CST 2017 1 12244
朴素分類算法

貝葉斯定理是關於隨機事件A和B的條件概率的一則定理(比如常見的:P(A|B)是在B發生的情況下A發生的可能性)。 朴素的含義是各特征相互獨立,且同等重要。某些 分類算法均以貝葉斯定理為基礎。由此產生了 朴素分類算法。 朴素分類算法的思想基礎是:對於給出 ...

Tue Oct 22 21:54:00 CST 2019 0 579
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM