原文:BP神經網絡-- 基本模型

BP 神經網絡中的 BP 為 Back Propagation 的簡寫,最早它是由Rumelhart McCelland等科學家於 年提出來的,Rumelhart 並在Nature 上發表了一篇非常著名的文章 Learning representations by back propagating errors 。隨着時代的遷移,BP神經網絡理論不斷的得到改進 更新,現在無疑已成為了應用最為廣泛 ...

2012-07-28 22:04 8 32590 推薦指數:

查看詳情

BP神經網絡模型

1. BP神經網絡模型(Backpropagation Neural Networks) 采用非線性激活函數,Sigmoid函數。 三個層次:輸入層(Input Layer),隱藏層(Hidden Layer) 和輸出層(Output layer),就好比神經網絡的各個神經元具有 ...

Sun Jul 05 23:38:00 CST 2020 0 1469
BP神經網絡

BP(Back Propagation)神經網絡是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播算法訓練的多層前饋網絡,是目前應用最廣泛的神經網絡模型之一。BP網絡能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系 ...

Tue Jul 07 04:38:00 CST 2015 0 2415
BP神經網絡

代碼為MNIST數據集上運行簡單BP神經網絡的python實現。 以下公式和文字來自Wanna_Go的博文 http://www.cnblogs.com/wxshi/p/6077734.html,包含詳盡的描述和推導。 BP神經網絡 單個神經 ...

Sat Nov 26 05:49:00 CST 2016 0 1511
BP神經網絡

起源:線性神經網絡與單層感知器 古老的線性神經網絡,使用的是單層Rosenblatt感知器。該感知器模型已經不再使用,但是你可以看到它的改良版:Logistic回歸。 可以看到這個網絡,輸入->加權->映射->計算分類誤差->迭代修改W、b,其實和數學上的回歸 ...

Sun Mar 08 23:47:00 CST 2015 1 3051
BP神經網絡

BP神經網絡 人工神經網絡與人工神經元模型   In machine learning and cognitive science, artificial neural networks (ANNs) are a family of statistical learning ...

Tue Aug 06 10:13:00 CST 2019 0 1020
BP神經網絡

由於課題需要學習神經網絡也有一段時間了,每次只是調用一下matlab的newff函數設置幾個參數,就自以為掌握了。真是可笑,會了其實只是會使用,一知半解而已。 本來想寫人工神經網絡,但是范圍太廣,無法駕馭,姑且就先寫BP吧,因為BP是目前應用最廣泛的神經網絡模型 ...

Mon Sep 23 07:58:00 CST 2013 1 5402
BP神經網絡 [神經網絡 2]

本文來自於 [1] BP神經網絡 和 [2] Wikipedia: Backpropagation,感謝原文作者! 1- M-P模型   按照生物神經元,我們建立M-P模型。為了使得建模更加簡單,以便於進行形式化表達,我們忽略時間整合作用、不應期等復雜因素,並把 ...

Fri May 22 22:52:00 CST 2015 0 2157
神經網絡BP神經網絡

一、神經神經元模型是一個包含輸入,輸出與計算功能的模型。(多個輸入對應一個輸出) 一個神經網絡的訓練算法就是讓權重(通常用w表示)的值調整到最佳,以使得整個網絡的預測效果最好。 事實上,在神經網絡的每個層次中,除了輸出層以外,都會含有這樣一個偏置單元。這些節點是默認存在的。它本質上 ...

Sun Dec 31 23:31:00 CST 2017 0 1533
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM