KL散度是度量兩個分布之間差異的函數。在各種變分方法中,都有它的身影。 轉自:https://zhuanlan.zhihu.com/p/22464760 一維高斯分布的KL散度 多維高斯分布的KL散度: KL散度公式為: ...
相對熵 relative entropy 又稱為KL散度 Kullback Leibler divergence,簡稱KLD ,信息散度 information divergence ,信息增益 information gain 。 KL散度是兩個概率分布P和Q差別的非對稱性的度量。 KL散度是用來度量使用基於Q的編碼來編碼來自P的樣本平均所需的額外的比特個數。 典型情況下,P表示數據的真實分布 ...
2012-02-05 10:35 0 4282 推薦指數:
KL散度是度量兩個分布之間差異的函數。在各種變分方法中,都有它的身影。 轉自:https://zhuanlan.zhihu.com/p/22464760 一維高斯分布的KL散度 多維高斯分布的KL散度: KL散度公式為: ...
KL距離,是Kullback-Leibler差異(Kullback-Leibler Divergence)的簡稱,也叫做相對熵(Relative Entropy)。它衡量的是相同事件空間里的兩個概率分布的差異情況。其物理意義是:在相同事件空間里,概率分布P(x)的事件空間,若用概率分布Q(x)編碼 ...
KL 散度又叫 相對熵,是衡量 兩個概率分布 匹配程度的指標,KL 散度越大,分布差異越大,匹配度越低 計算公式如下 或者 其中 p是 目標分布,或者叫被匹配的分布,或者叫模板分布,q 是去匹配的分布; 試想,p 是真實值,q 是預測值,豈不是 個 loss ...
參考 在pytorch中計算KLDiv loss 注意reduction='batchmean',不然loss不僅會在batch維度上取平均,還會在概率分布的維度上取平均。具體見官方文檔 ...
1. 概述 在信息論中,相對熵等價於兩個概率分布信息熵的差值,若其中一個概率分布為真實分布,另一個為理論(擬合)分布,則此時相對熵等於交叉熵與真實分布信息熵之差,表示使用理論分布擬合真實分布時所產生的信息損耗。 \[D_{K L}(p \| q)=\sum_{i=1}^{N}-p ...
在信息論和概率論中,KL散度描述兩個概率分布\(P\)和\(Q\)之間的相似程度。 定義為: \[D(p||q)=\sum\limits_{i=1}^np(x)\log\frac{p(x)}{q(x)}. \] ...
交叉熵可在神經網絡(機器學習)中作為損失函數,p表示真實標記的分布,q則為訓練后的模型的預測標記分布,交叉熵損失函數可以衡量真實分布p與當前訓練得到的概率分布q有多么大的差異。 相對熵(relative entropy)就是KL散度(Kullback–Leibler ...
相對熵(relative entropy)就是KL散度(Kullback–Leibler divergence),用於衡量兩個概率分布之間的差異。 一句話總結的話:KL散度可以被用於計算代價,而在特定情況下最小化KL散度等價於最小化交叉熵。而交叉熵的運算更簡單,所以用交叉熵來當做代價 ...