Linux下的Socket網絡編程


Linux平台下的SOCKET網絡通信

1,什么是SOCKET

Socket即為套接字,是計算機之間進行網絡通信的一種方式,基於計算機網絡中的TCP(UDP)/IP層

在linux中,socket被視為一個文件,即在完成一系列操作后,可以用類似讀寫文件的方式對socket進行操作,實現與網絡通信

2,SOCKET的種類

對於不同的協議,存在不同的SOCKET種類

1,TCP:SOCKET_STREAM

2,UPD:SOCKET_DGRAM

3,IP:SOCKET_RAW(原始套接字,不常用)

3,套接字的使用(以SOCKET_STREAM為例)

先上一個示例

服務端程序

#include <stdio.h>      
#include <sys/types.h>
#include <sys/socket.h>   
#include <netdb.h>

const char APPMESSAGE[] = "Scoket Network Programming Test String!\n";

int main(int argc, char *argv[]) {

    int simpleSocket = 0;
    int simplePort = 0;
    int returnStatus = 0;
    struct sockaddr_in simpleServer;

    if (2 != argc) {

        fprintf(stderr, "Usage: %s <port>\n", argv[0]);
        exit(1);

    }

    simpleSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

    if (simpleSocket == -1) {

        fprintf(stderr, "Could not create a socket!\n");
        exit(1);

    }
    else {
	    fprintf(stderr, "Socket created!\n");
    }

    /* retrieve the port number for listening */
    simplePort = atoi(argv[1]);

    /* setup the address structure */
    /* use INADDR_ANY to bind to all local addresses  */
    bzero(&simpleServer, sizeof(simpleServer)); 
    simpleServer.sin_family = AF_INET;
    simpleServer.sin_addr.s_addr = htonl(INADDR_ANY);
    simpleServer.sin_port = htons(simplePort);

    /*  bind to the address and port with our socket  */
    returnStatus = bind(simpleSocket,(struct sockaddr *)&simpleServer,sizeof(simpleServer));

    if (returnStatus == 0) {
	    fprintf(stderr, "Bind completed!\n");
    }
    else {
        fprintf(stderr, "Could not bind to address!\n");
	close(simpleSocket);
	exit(1);
    }

    /* lets listen on the socket for connections      */
    returnStatus = listen(simpleSocket, 5);

    if (returnStatus == -1) {
        fprintf(stderr, "Cannot listen on socket!\n");
	close(simpleSocket);
        exit(1);
    }

    while (1)

    {

        struct sockaddr_in clientName = { 0 };
	int simpleChildSocket = 0;
	int clientNameLength = sizeof(clientName);

	/* wait here */

        simpleChildSocket = accept(simpleSocket,(struct sockaddr *)&clientName, &clientNameLength);

	if (simpleChildSocket == -1) {

            fprintf(stderr, "Cannot accept connections!\n");
	    close(simpleSocket);
	    exit(1);

	}

        /* handle the new connection request  */
	/* write out our message to the client */
	write(simpleChildSocket, APPMESSAGE, strlen(APPMESSAGE));
        close(simpleChildSocket);

    }

    close(simpleSocket);
    return 0;

}

客戶端

#include <stdio.h>      
#include <sys/types.h>
#include <sys/socket.h>   
#include <netdb.h>

int main(int argc, char *argv[]) {

    int simpleSocket = 0;
    int simplePort = 0;
    int returnStatus = 0;
    char buffer[256] = "";
    struct sockaddr_in simpleServer;

    if (3 != argc) {

        fprintf(stderr, "Usage: %s <server> <port>\n", argv[0]);
        exit(1);

    }

    /* create a streaming socket      */
    simpleSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

    if (simpleSocket == -1) {

        fprintf(stderr, "Could not create a socket!\n");
        exit(1);

    }
    else {
	    fprintf(stderr, "Socket created!\n");
    }

    /* retrieve the port number for connecting */
    simplePort = atoi(argv[2]);

    /* setup the address structure */
    /* use the IP address sent as an argument for the server address  */
    bzero(&simpleServer, sizeof(simpleServer)); 
    simpleServer.sin_family = AF_INET;
    inet_addr(argv[2], &simpleServer.sin_addr.s_addr);
    simpleServer.sin_port = htons(simplePort);

    /*  connect to the address and port with our socket  */
    returnStatus = connect(simpleSocket, (struct sockaddr *)&simpleServer, sizeof(simpleServer));

    if (returnStatus == 0) {
	    fprintf(stderr, "Connect successful!\n");
    }
    else {
        fprintf(stderr, "Could not connect to address!\n");
	close(simpleSocket);
	exit(1);
    }

    /* get the message from the server   */
    returnStatus = read(simpleSocket, buffer, sizeof(buffer));

    if ( returnStatus > 0 ) {
        printf("%d: %s", returnStatus, buffer);
    } else {
        fprintf(stderr, "Return Status = %d \n", returnStatus);
    }

    close(simpleSocket);
    return 0;

}

4,參數詳解

4.1,socket()

int  socket(int protofamily, int type, int protocol);//返回文件描述符

作用:獲取SOCKET的文件描述符

  • protofamily:即協議域,又稱為協議族(family)。常用的協議族有,AF_INET(IPV4)、AF_INET6(IPV6)、AF_LOCAL(或稱AF_UNIX,Unix域socket)、AF_ROUTE等等。協議族決定了socket的地址類型,在通信中必須采用對應的地址,如AF_INET決定了要用ipv4地址(32位的)與端口號(16位的)的組合、AF_UNIX決定了要用一個絕對路徑名作為地址。
  • type:指定socket類型。常用的socket類型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等)。
  • protocol:故名思意,就是指定協議。常用的協議有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它們分別對應TCP傳輸協議、UDP傳輸協議、STCP傳輸協議、TIPC傳輸協議

注意:並不是上面的type和protocol可以隨意組合的,如SOCK_STREAM不可以跟IPPROTO_UDP組合。當protocol為0時,會自動選擇type類型對應的默認協議。

當獲取一個SOCKET文件描述符的時候,就可以對其進行一系列的操作了

4.2,bind()

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);//返回0則表示綁定成功,非0則失敗

作用:將SOCKET與特定的套接字綁定

  • sockfd:即socket描述字,它是通過socket()函數創建了,唯一標識一個socket。bind()函數就是將給這個描述字綁定一個名字。

  • addr:一個const struct sockaddr *指針,指向要綁定給sockfd的協議地址。這個地址結構根據地址創建socket時的地址協議族的不同而不同,如ipv4對應的是:

    struct sockaddr_in {
        sa_family_t    sin_family; /* address family: AF_INET */
        in_port_t      sin_port;   /* port in network byte order */
        struct in_addr sin_addr;   /* internet address */
    };
    
    /* Internet address. */
    struct in_addr {
        uint32_t       s_addr;     /* address in network byte order */
    };
    

注:

網絡字節序與主機字節序

主機字節序就是我們平常說的大端和小端模式:不同的CPU有不同的字節序類型,這些字節序是指整數在內存中保存的順序,這個叫做主機序。引用標准的Big-Endian和Little-Endian的定義如下:

  a) Little-Endian就是低位字節排放在內存的低地址端,高位字節排放在內存的高地址端。

  b) Big-Endian就是高位字節排放在內存的低地址端,低位字節排放在內存的高地址端。

網絡字節序:4個字節的32 bit值以下面的次序傳輸:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。這種傳輸次序稱作大端字節序。由於TCP/IP首部中所有的二進制整數在網絡中傳輸時都要求以這種次序,因此它又稱作網絡字節序。字節序,顧名思義字節的順序,就是大於一個字節類型的數據在內存中的存放順序,一個字節的數據沒有順序的問題了。

所以:在將一個地址綁定到socket的時候,請先將主機字節序轉換成為網絡字節序,而不要假定主機字節序跟網絡字節序一樣使用的是Big-Endian。由於這個問題曾引發過血案!公司項目代碼中由於存在這個問題,導致了很多莫名其妙的問題,所以請謹記對主機字節序不要做任何假定,務必將其轉化為網絡字節序再賦給socket。

4.3,listen(),connect()

如果作為一個服務器,在調用socket()、bind()之后就會調用listen()來監聽這個socket,如果客戶端這時調用connect()發出連接請求,服務器端就會接收到這個請求。

int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函數的第一個參數即為要監聽的socket描述字,第二個參數為相應socket可以排隊的最大連接個數。socket()函數創建的socket默認是一個主動類型的,listen函數將socket變為被動類型的,等待客戶的連接請求。

connect函數的第一個參數即為客戶端的socket描述字,第二參數為服務器的socket地址,第三個參數為socket地址的長度。客戶端通過調用connect函數來建立與TCP服務器的連接。

4.4,accept()

TCP服務器端依次調用socket()、bind()、listen()之后,就會監聽指定的socket地址了。TCP客戶端依次調用socket()、connect()之后就向TCP服務器發送了一個連接請求。TCP服務器監聽到這個請求之后,就會調用accept()函數取接收請求,這樣連接就建立好了。之后就可以開始網絡I/O操作了,即類同於普通文件的讀寫I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen); //返回連接connect_fd
  • 參數sockfd

    參數sockfd就是上面解釋中的監聽套接字,這個套接字用來監聽一個端口,當有一個客戶與服務器連接時,它使用這個一個端口號,而此時這個端口號正與這個套接字關聯。當然客戶不知道套接字這些細節,它只知道一個地址和一個端口號。

  • 參數addr

    這是一個結果參數,它用來接受一個返回值,這返回值指定客戶端的地址,當然這個地址是通過某個地址結構來描述的,用戶應該知道這一個什么樣的地址結構。如果對客戶的地址不感興趣,那么可以把這個值設置為NULL。

  • 參數len

    如同大家所認為的,它也是結果的參數,用來接受上述addr的結構的大小的,它指明addr結構所占有的字節個數。同樣的,它也可以被設置為NULL。

如果accept成功返回,則服務器與客戶已經正確建立連接了,此時服務器通過accept返回的套接字來完成與客戶的通信。

注意:

accept默認會阻塞進程,直到有一個客戶連接建立后返回,它返回的是一個新可用的套接字,這個套接字是連接套接字。

此時我們需要區分兩種套接字,

​ 監聽套接字: 監聽套接字正如accept的參數sockfd,它是監聽套接字,在調用listen函數之后,是服務器開始調用socket()函數生成的,稱為監聽socket描述字(監聽套接字)

​ 連接套接字:一個套接字會從主動連接的套接字變身為一個監聽套接字;而accept函數返回的是已連接socket描述字(一個連接套接字),它代表着一個網絡已經存在的點點連接。

​ 一個服務器通常通常僅僅只創建一個監聽socket描述字,它在該服務器的生命周期內一直存在。內核為每個由服務器進程接受的客戶連接創建了一個已連接socket描述字,當服務器完成了對某個客戶的服務,相應的已連接socket描述字就被關閉。

​ 自然要問的是:為什么要有兩種套接字?原因很簡單,如果使用一個描述字的話,那么它的功能太多,使得使用很不直觀,同時在內核確實產生了一個這樣的新的描述字。

連接套接字socketfd_new 並沒有占用新的端口與客戶端通信,依然使用的是與監聽套接字socketfd一樣的端口號

4.5,read()、write()等函數

萬事具備只欠東風,至此服務器與客戶已經建立好連接了。可以調用網絡I/O進行讀寫操作了,即實現了網咯中不同進程之間的通信!網絡I/O操作有下面幾組:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

我推薦使用recvmsg()/sendmsg()函數,這兩個函數是最通用的I/O函數,實際上可以把上面的其它函數都替換成這兩個函數。它們的聲明如下:

       #include <unistd.h>

       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include <sys/types.h>
       #include <sys/socket.h>

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

read函數是負責從fd中讀取內容.當讀成功時,read返回實際所讀的字節數,如果返回的值是0表示已經讀到文件的結束了,小於0表示出現了錯誤。如果錯誤為EINTR說明讀是由中斷引起的,如果是ECONNREST表示網絡連接出了問題。

write函數將buf中的nbytes字節內容寫入文件描述符fd.成功時返回寫的字節數。失敗時返回-1,並設置errno變量。 在網絡程序中,當我們向套接字文件描述符寫時有倆種可能。1)write的返回值大於0,表示寫了部分或者是全部的數據。2)返回的值小於0,此時出現了錯誤。我們要根據錯誤類型來處理。如果錯誤為EINTR表示在寫的時候出現了中斷錯誤。如果為EPIPE表示網絡連接出現了問題(對方已經關閉了連接)。

其它的我就不一一介紹這幾對I/O函數了,具體參見man文檔或者baidu、Google,下面的例子中將使用到send/recv。

4.6,close()

在服務器與客戶端建立連接之后,會進行一些讀寫操作,完成了讀寫操作就要關閉相應的socket描述字,好比操作完打開的文件要調用fclose關閉打開的文件。

#include <unistd.h>
int close(int fd);

close一個TCP socket的缺省行為時把該socket標記為以關閉,然后立即返回到調用進程。該描述字不能再由調用進程使用,也就是說不能再作為read或write的第一個參數。

注意:close操作只是使相應socket描述字的引用計數-1,只有當引用計數為0的時候,才會觸發TCP客戶端向服務器發送終止連接請求。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM