利用torch.nn實現前饋神經網絡解決 回歸 任務


1 導入實驗需要的包

import torch from torch import nn import numpy as np import matplotlib.pyplot as plt from torch.utils.data import DataLoader,TensorDataset from sklearn.model_selection import train_test_split from collections import OrderedDict from torch.nn import init

2 初始化數據

num_input ,num_example = 500,10000 true_w = torch.ones(1,num_input)*0.0056 true_b = 0.028 x_data = torch.tensor(np.random.normal(0,0.001,size  = (num_example,num_input)),dtype = torch.float32) y = torch.mm(x_data,true_w.t()) +true_b y += torch.normal(0,0.001,y.shape) train_x,test_x,train_y,test_y = train_test_split(x_data,y,shuffle= True,test_size=0.3)

3 加載數據

batch_size = 50 train_dataset = TensorDataset(train_x,train_y) train_iter = DataLoader( dataset = train_dataset, batch_size = batch_size, shuffle = True, num_workers = 0, ) test_dataset = TensorDataset(test_x,test_y) test_iter = DataLoader( dataset = test_dataset, batch_size = batch_size, shuffle = True, num_workers = 0, )

4 定義模型

model= nn.Sequential(OrderedDict([ ('linear1',nn.Linear(num_input,256)), ('linear2',nn.Linear(256,128)), ('linear3',nn.Linear(128,1)), ]) ) for param in model.parameters(): init.normal_(param,mean = 0 ,std = 0.001)

 

# for param in model.state_dict(): # print(param) # print(model.state_dict()[param])

5 參數初始化

lr = 0.001 loss = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(),lr)

6 定義訓練函數

def train(model,train_iter,test_iter,loss,num_epochs,batch_size,lr): train_ls,test_ls = [],[] for epoch in range(num_epochs): train_ls_sum ,test_ls_sum = 0,0 for x,y in train_iter: y_pred = model(x) l = loss(y_pred,y) optimizer.zero_grad() l.backward() optimizer.step() train_ls_sum += l.item() for x ,y in test_iter: y_pred = model(x) l = loss(y_pred,y) test_ls_sum +=l.item() train_ls.append(train_ls_sum) test_ls.append(test_ls_sum) print('epoch %d,train_loss %.6f,test_loss %f'%(epoch+1, train_ls[epoch],test_ls[epoch])) return train_ls,test_ls

7 訓練

num_epochs = 200 train_loss ,test_loss = train(model,train_iter,test_iter,loss,num_epochs,batch_size,lr)

8 可視化

x = np.linspace(0,len(train_loss),len(train_loss)) plt.plot(x,train_loss,label="train_loss",linewidth=1.5) plt.plot(x,test_loss,label="test_loss",linewidth=1.5) plt.xlabel("epoch") plt.ylabel("loss") plt.legend() plt.show()

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM