DES加密算法
一、 概述
DES加密算法屬於對稱密碼算法中的分組加密算法
密鑰長64位,56位參與運算,8位為檢驗位(8,16,24..)
DES加密將明文分為固定的字節塊,對字節塊進行加密,最后串在一起便是密文
二、加密流程與加密步驟
流程圖
步驟(全程L1只是通過R0來填充)
三、加密步驟之IP置換
左邊是初始置換表,置換后將64位明文分為兩組32位數據
四、加密步驟之16輪迭代(相當於流程圖中的f()函數)
F輪函數
1、 E擴展
擴展表
中間白色的是原來的數據,兩邊灰色的是擴展的數據
擴展規律:
每組數據的中間四個數據就是原來未擴展時的數據,擴展后第二組數據的第一個位與擴展
前,第一組數據的最后一位相等,擴展后第二組的最后一位等於擴展前數據的第一個位…以
此類推
2、異或
E擴展完成后與對應的輪密鑰進行異或(密鑰的生成下文會說)
3、S盒壓縮處理
主要步驟就是將48位輸入分為8塊6位數據,經過8個S盒進行壓縮,處理得到8個4位
數據,合到一起即為32位數據
主要壓縮方法是將6位數據的頭尾與中間分開,分別作為行數與列數,直接取對應的S盒中
查找對應的數據(四位)替換成原來的6位數據即可
下面是S盒表
4、P盒置換
將32位的數據進行置換
至此,一次輪函數完成
最終結果與L0進行異或(就是流程圖中的異或),並把值賦給R1,L1 = R0
再把L1,R1帶入進行循環
反復直至得到L16與R16
五、加密步驟之逆置換
將L16與R16的值拼接到一起經過逆置換,即得到DES密文
六、密鑰生成
密鑰是64位的,我們通過PC-1置換表(上圖)變成56位
然后把56位數據的高28位與低28位分別給C0,D0
C0,D0是第1次迭代,兩個數據都需要循環左移位1次,得到C1,D1
再把C1,D1拼接起來,經過PC2表置換,得到K1,K1即為第一個輪密鑰
再把C1,D1經過第2次迭代,兩個數據都需要循環左移1次,得到C2,D2,再次拼接,PC-2置換,得到K2,K2即為第二個輪密鑰
再把C2,D2經過第三次迭代,左移2次…
…
如此反復共16次,一共會得到16個輪密鑰
參考
https://www.bilibili.com/video/BV1KQ4y127AT?spm_id_from=333.999.0.0
土豆姐姐yyds
七、第一種代碼實現方案
目前網上流傳兩種加密DES的加密方法,感覺這種方法DES加密用的多,第二種,3DES加密用的多
代碼如下:
#include <stdio.h> #include <stdlib.h> #include <string.h> //密鑰 //64位變56位密鑰置換表 int pc_1[56]={ 57,49,41,33,25,17,9, 1,58,50,42,34,26,18, 10,2,59,51,43,35,27, 19,11,3,60,52,44,36, 63,55,47,39,31,23,15, 7,62,54,46,38,30,22, 14,6,61,53,45,37,29, 21,13,5,28,20,12,4 }; //循環左移表 int left_list[16]={1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1}; //56位變48位密鑰置換表 int pc_2[48]={ 14,17,11,24,1,5, 3,28,15,6,21,10, 23,19,12,4,26,8, 16,7,27,20,13,2, 41,52,31,37,47,55, 30,40,51,45,33,48, 44,49,39,56,34,53, 46,42,50,36,29,32 }; //明文 //IP置換表 int IP[64]={ 58,50,42,34,26,18,10,2, 60,52,44,36,28,20,12,4, 62,54,46,38,30,22,14,6, 64,56,48,40,32,24,16,8, 57,49,41,33,25,17,9,1, 59,51,43,35,27,19,11,3, 61,53,45,37,29,21,13,5, 63,55,47,39,31,23,15,7 }; //r數組拓展置換表 int E[48]={ 32,1,2,3,4,5, 4,5,6,7,8,9, 8,9,10,11,12,13, 12,13,14,15,16,17, 16,17,18,19,20,21, 20,21,22,23,24,25, 24,25,26,27,28,29, 28,29,30,31,32,1 }; //l數組s盒置換表 int s_box[8][4][16]={ 14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7, 0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8, 4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0, 15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13, 15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10, 3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5, 0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15, 13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9, 10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8, 13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1, 13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7, 1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12, 7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15, 13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9, 10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4, 3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14, 2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9, 14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6, 4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14, 11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3, 12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11, 10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8, 9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6, 4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13, 4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1, 13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6, 1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2, 6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12, 13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7, 1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2, 7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8, 2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11 }; //P盒置換 int p[32]={16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25}; //IP逆置換表 int IP_[64]={ 40,8,48,16,56,24,64,32, 39,7,47,15,55,23,63,31, 38,6,46,14,54,22,62,30, 37,5,45,13,53,21,61,29, 36,4,44,12,52,20,60,28, 35,3,43,11,51,19,59,27, 34,2,42,10,50,18,58,26, 33,1,41,9,49,17,57,25 }; //循環左移,arr為初始數組,start為數組的初始位置,end為數組的末尾位置 void Reverse(char *arr,int start,int end){ for(;start<end;start++,end--){ int s=arr[end]; arr[end]=arr[start]; arr[start]=s; } } //arr初始數組,n數組長度,k左移位數 1234567 void LeftShift(char *arr,int n,int k){ k=k%n; Reverse(arr,0,k-1);//將前面k位逆置1234->4321 Reverse(arr,k,n-1);//將后面幾位逆置 567->765 Reverse(arr,0,n-1);//整個數組逆置4321765->5671234 } //置換表,a為初始數組,change置換表,result結果數組,len想要置換的長度 void change_table(char *a,int *change,char *result,int len){ int i; for(i=0;i<len;i++){ result[i]=a[change[i]-1]; } } //合並數組 void merge(char *dest, char *src1, char *src2) { while(*src1) *dest++ = *src1++; while(*src2) *dest++ = *src2++; } //子密鑰生成函數,key為初始64位密鑰,key_48為子密鑰生成后的48位密鑰 void get_16_key(char *key_64,char key_48[][49]){ char key_56[57]="\0";//第一次置換后保存的56位密鑰 char c[17][28]; char d[17][28];//需要用到c0-c16,每個28位 memset(c,0,sizeof(c)); memset(d,0,sizeof(d)); change_table(key_64,pc_1,key_56,56);//第一次置換,64位密鑰 //c0d0初始化 for(int i=0;i<56;i++){ if(i<28){ c[0][i]=key_56[i];//前面28位密鑰賦值給c0 //printf("%c",c[0][i]); } else{ d[0][i-28]=key_56[i];//前面28位密鑰賦值給c0 // printf("%c",d[0][i-28]); } } //生成后面的16個子密鑰 printf("16個子密鑰為: \n"); for(int i=1,j=0;i<17;i++,j++){ for(int s=0;s<28;s++){ c[i][s]=c[i-1][s]; d[i][s]=d[i-1][s]; } LeftShift(d[i],sizeof(d[i]),left_list[j]); LeftShift(c[i],sizeof(c[i]),left_list[j]); //每次左移完成后,將c和d拼接起來並進行第二次置換為48位子密鑰 memset(key_56,0,strlen(key_56)); for(int k=0;k<56;k++){ if(k<28) key_56[k]=c[i][k]; else key_56[k]=d[i][k-28]; } change_table(key_56,pc_2,key_48[i-1],48);//得到最終的子密鑰 printf("k%d=",i); puts(key_48[i-1]); } } //加密算法 void des(char *mingwen_64,char *key_64,char *result,int type){ int i,j,k; char key_48[16][49];//16個子密鑰48位 char mingwen_IP[65]="\0";//IP 置換后的64位明文 char r_48[49]="\0";//拓展置換后 char l[17][33]; char r[17][33];//需要用到l0-l16,每個32位 char bit6[8][6];//s盒置換中用到的8個6位的塊 char r_32[33]="\0";//p盒置換后的32位 memset(key_48,0,sizeof(key_48)); memset(l,0,sizeof(l)); memset(r,0,sizeof(r)); memset(bit6,0,sizeof(bit6)); get_16_key(key_64,key_48);//獲取16個子密鑰保存在key_48中 change_table(mingwen_64,IP,mingwen_IP,64);//對明文進行IP置換 //初始化l0r0 for(i=0;i<64;i++){ if(i<32){ l[0][i]=mingwen_IP[i]; }else{ r[0][i-32]=mingwen_IP[i]; } } //16次遞推運算 for(i=1;i<17;i++){ //Rn=L(n-1)異或P( S ( ( E ( R(n-1) ) 異或 Kn ) ) ) //獲取ln for(j=0;j<32;j++){ l[i][j]=r[i-1][j]; } //獲取rn //拓展置換,將r從32位拓展到48位 change_table(r[i-1],E,r_48,48); //與k子密鑰進行異或 int ch; if(type==1){ //加密 for(j=0;j<48;j++){ ch=r_48[j]^key_48[i-1][j]; r_48[j]=ch+'0'; } } else{ for(j=0;j<48;j++){ ch=r_48[j]^key_48[16-i][j]; // 加密和解密不一樣的地方就在這里 // r_48[j]=ch+'0'; } } //s盒轉換為32位 int a=0; int b=0;//控制s盒置換后的位置 for(j=0;j<8;j++){ //48位數據分為8個6位的塊,0-7 for(k=0;k<6;k++){ bit6[j][k]=r_48[a]; a++; } int x,y,re;//x行數 y列數 re結果 x=(bit6[j][0]-'0')*2+(bit6[j][5]-'0');//取出這一塊當中第一位和第六位形成十進制數x作為行數 y=(bit6[j][1]-'0')*8+(bit6[j][2]-'0')*4+(bit6[j][3]-'0')*2+(bit6[j][4]-'0');//取出中間的4位形成十進制數作為列數 //每一塊都有一個對應的s盒 re=s_box[j][x][y];//去這一塊對應的s盒中的x行y列找到結果 //結果轉成二進制 char str[4]={'0','0','0','0'}; int q=0;//余數 int c=3; while(re!=0){ q=re%2; str[c]=q+48; c--; re=re/2; } for(int d=0;d<4;d++){ r[i][b]=str[d]; b++; } } //p盒置換后與l數組進行異或 change_table(r[i],p,r_32,32); for(j=0;j<32;j++){ r[i][j]=(l[i-1][j]^r_32[j])+'0'; } printf("N=%d\n",i); printf("L%d=",i); puts(l[i]); printf("R%d=",i); puts(r[i]); } //由r16l16和一次IP逆置換獲得最終的密文 for(i=0;i<64;i++){ if(i<32){ mingwen_64[i]=r[16][i]; } else{ mingwen_64[i]=l[16][i-32]; } } change_table(mingwen_64,IP_,result,64);//IP逆置換最后的密文 } int main(){ // char mingwen_64[65];//明文0011000000110001001100100011001100110100001101010011011000110111 // char result1[65]="\0";//由明文加密得到的密文 // char ming_key_64[65];//64位加密密鑰 0011000100110010001100110011010000110101001101100011011100111000 // char miwen_64[65];//密文 // char mi_key_64[65];//64位解密密鑰 // char result2[65]="\0";//由密文解密得到的明文 // printf("請輸入要加密的明文:"); // gets(mingwen_64); // printf("請輸入加密密鑰:"); // gets(ming_key_64); char mingwen_64[65] = "0011000000110001001100100011001100110100001101010011011000110111"; char ming_key_64[65] = "0011000100110010001100110011010000110101001101100011011100111000"; char result1[65]={0}; //加密 // printf("加密過程:\n"); des(mingwen_64,ming_key_64,result1,1);//1代表加密 printf("加密后的密文為:\n"); puts(result1); getchar(); // printf("請輸入要解密的密文:"); // gets(miwen_64); // printf("請輸入解密密鑰:"); // gets(mi_key_64); //解密 // printf("解密過程:\n"); char miwen_64[65] = "1000101110110100011110100000110011110000101010010110001001101101"; char mi_key_64[65] = "0011000100110010001100110011010000110101001101100011011100111000"; char result2[65]={0}; des(miwen_64,mi_key_64,result2,2);//2代表解密 printf("解密后的明文為:\n"); puts(result2); getchar(); return 0; }
八、第二種代碼實現方案
代碼如下:
#include <stdio.h> #include <stddef.h> #include <stdint.h> #define DES_ENCRYPT 1 #define DES_DECRYPT 0 #define ERR_DES_INVALID_INPUT_LENGTH -0x0002 /**< The data input has an invalid length. */ #define MBEDTLS_DES_KEY_SIZE 8 #define DES_KEY_SIZE (8) #define DES3_KEY2_SIZE (16) #define DES3_KEY3_SIZE (24) typedef struct { uint32_t sk[32]; /*!< DES subkeys */ }des_context; /** * \brief Triple-DES context structure */ typedef struct { uint32_t sk[96]; /*!< 3DES subkeys */ }des3_context; #define DES_C #if defined(DES_C) #include <string.h> #include <stdlib.h> #if !defined(DES_ALT) /* Implementation that should never be optimized out by the compiler */ static void zeroize( void *v, size_t n ) { volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0; } /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) \ { \ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ | ( (uint32_t) (b)[(i) + 1] << 16 ) \ | ( (uint32_t) (b)[(i) + 2] << 8 ) \ | ( (uint32_t) (b)[(i) + 3] ); \ } #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif /* * Expanded DES S-boxes */ static const uint32_t SB1[64] = { 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004 }; static const uint32_t SB2[64] = { 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000 }; static const uint32_t SB3[64] = { 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200 }; static const uint32_t SB4[64] = { 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080 }; static const uint32_t SB5[64] = { 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100 }; static const uint32_t SB6[64] = { 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010 }; static const uint32_t SB7[64] = { 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002 }; static const uint32_t SB8[64] = { 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000 }; /* * PC1: left and right halves bit-swap */ static const uint32_t LHs[16] = { 0x00000000, 0x00000001, 0x00000100, 0x00000101, 0x00010000, 0x00010001, 0x00010100, 0x00010101, 0x01000000, 0x01000001, 0x01000100, 0x01000101, 0x01010000, 0x01010001, 0x01010100, 0x01010101 }; static const uint32_t RHs[16] = { 0x00000000, 0x01000000, 0x00010000, 0x01010000, 0x00000100, 0x01000100, 0x00010100, 0x01010100, 0x00000001, 0x01000001, 0x00010001, 0x01010001, 0x00000101, 0x01000101, 0x00010101, 0x01010101, }; /* * Initial Permutation macro */ #define DES_IP(X,Y) \ { \ T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \ T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \ T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \ T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \ Y = ((Y << 1) | (Y >> 31)) & 0xFFFFFFFF; \ T = (X ^ Y) & 0xAAAAAAAA; Y ^= T; X ^= T; \ X = ((X << 1) | (X >> 31)) & 0xFFFFFFFF; \ } /* * Final Permutation macro */ #define DES_FP(X,Y) \ { \ X = ((X << 31) | (X >> 1)) & 0xFFFFFFFF; \ T = (X ^ Y) & 0xAAAAAAAA; X ^= T; Y ^= T; \ Y = ((Y << 31) | (Y >> 1)) & 0xFFFFFFFF; \ T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \ T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \ T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \ T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \ } /* * DES round macro */ #define DES_ROUND(X,Y) \ { \ T = *SK++ ^ X; \ Y ^= SB8[ (T ) & 0x3F ] ^ \ SB6[ (T >> 8) & 0x3F ] ^ \ SB4[ (T >> 16) & 0x3F ] ^ \ SB2[ (T >> 24) & 0x3F ]; \ \ T = *SK++ ^ ((X << 28) | (X >> 4)); \ Y ^= SB7[ (T ) & 0x3F ] ^ \ SB5[ (T >> 8) & 0x3F ] ^ \ SB3[ (T >> 16) & 0x3F ] ^ \ SB1[ (T >> 24) & 0x3F ]; \ } #define SWAP(a,b) { uint32_t t = a; a = b; b = t; t = 0; } void des_init( des_context *ctx ) { memset( ctx, 0, sizeof( des_context ) ); } void des_free( des_context *ctx ) { if( ctx == NULL ) return; zeroize( ctx, sizeof( des_context ) ); } void des3_init( des3_context *ctx ) { memset( ctx, 0, sizeof( des3_context ) ); } void des3_free( des3_context *ctx ) { if( ctx == NULL ) return; zeroize( ctx, sizeof( des3_context ) ); } static const unsigned char odd_parity_table[128] = { 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140, 143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168, 171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196, 199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224, 227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253, 254 }; void des_key_set_parity( unsigned char key[DES_KEY_SIZE] ) { int i; for( i = 0; i < DES_KEY_SIZE; i++ ) key[i] = odd_parity_table[key[i] / 2]; } /* * Check the given key's parity, returns 1 on failure, 0 on SUCCESS */ int des_key_check_key_parity( const unsigned char key[DES_KEY_SIZE] ) { int i; for( i = 0; i < DES_KEY_SIZE; i++ ) if( key[i] != odd_parity_table[key[i] / 2] ) return( 1 ); return( 0 ); } /* * Table of weak and semi-weak keys * * Source: http://en.wikipedia.org/wiki/Weak_key * * Weak: * Alternating ones + zeros (0x0101010101010101) * Alternating 'F' + 'E' (0xFEFEFEFEFEFEFEFE) * '0xE0E0E0E0F1F1F1F1' * '0x1F1F1F1F0E0E0E0E' * * Semi-weak: * 0x011F011F010E010E and 0x1F011F010E010E01 * 0x01E001E001F101F1 and 0xE001E001F101F101 * 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01 * 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E * 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E * 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1 * */ #define WEAK_KEY_COUNT 16 static const unsigned char weak_key_table[WEAK_KEY_COUNT][DES_KEY_SIZE] = { { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }, { 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE }, { 0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E }, { 0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1 }, { 0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E }, { 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01 }, { 0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1 }, { 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01 }, { 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE }, { 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01 }, { 0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1 }, { 0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E }, { 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE }, { 0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E }, { 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE }, { 0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1 } }; int des_key_check_weak( const unsigned char key[DES_KEY_SIZE] ) { int i; for( i = 0; i < WEAK_KEY_COUNT; i++ ) if( memcmp( weak_key_table[i], key, DES_KEY_SIZE) == 0 ) return( 1 ); return( 0 ); } void des_setkey( uint32_t SK[32], const unsigned char key[DES_KEY_SIZE] ) { int i; uint32_t X, Y, T; GET_UINT32_BE( X, key, 0 ); GET_UINT32_BE( Y, key, 4 ); /* * Permuted Choice 1 */ T = ((Y >> 4) ^ X) & 0x0F0F0F0F; X ^= T; Y ^= (T << 4); T = ((Y ) ^ X) & 0x10101010; X ^= T; Y ^= (T ); X = (LHs[ (X ) & 0xF] << 3) | (LHs[ (X >> 8) & 0xF ] << 2) | (LHs[ (X >> 16) & 0xF] << 1) | (LHs[ (X >> 24) & 0xF ] ) | (LHs[ (X >> 5) & 0xF] << 7) | (LHs[ (X >> 13) & 0xF ] << 6) | (LHs[ (X >> 21) & 0xF] << 5) | (LHs[ (X >> 29) & 0xF ] << 4); Y = (RHs[ (Y >> 1) & 0xF] << 3) | (RHs[ (Y >> 9) & 0xF ] << 2) | (RHs[ (Y >> 17) & 0xF] << 1) | (RHs[ (Y >> 25) & 0xF ] ) | (RHs[ (Y >> 4) & 0xF] << 7) | (RHs[ (Y >> 12) & 0xF ] << 6) | (RHs[ (Y >> 20) & 0xF] << 5) | (RHs[ (Y >> 28) & 0xF ] << 4); X &= 0x0FFFFFFF; Y &= 0x0FFFFFFF; /* * calculate subkeys */ for( i = 0; i < 16; i++ ) { if( i < 2 || i == 8 || i == 15 ) { X = ((X << 1) | (X >> 27)) & 0x0FFFFFFF; Y = ((Y << 1) | (Y >> 27)) & 0x0FFFFFFF; } else { X = ((X << 2) | (X >> 26)) & 0x0FFFFFFF; Y = ((Y << 2) | (Y >> 26)) & 0x0FFFFFFF; } *SK++ = ((X << 4) & 0x24000000) | ((X << 28) & 0x10000000) | ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000) | ((X << 6) & 0x01000000) | ((X << 9) & 0x00200000) | ((X >> 1) & 0x00100000) | ((X << 10) & 0x00040000) | ((X << 2) & 0x00020000) | ((X >> 10) & 0x00010000) | ((Y >> 13) & 0x00002000) | ((Y >> 4) & 0x00001000) | ((Y << 6) & 0x00000800) | ((Y >> 1) & 0x00000400) | ((Y >> 14) & 0x00000200) | ((Y ) & 0x00000100) | ((Y >> 5) & 0x00000020) | ((Y >> 10) & 0x00000010) | ((Y >> 3) & 0x00000008) | ((Y >> 18) & 0x00000004) | ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001); *SK++ = ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000) | ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000) | ((X >> 2) & 0x02000000) | ((X << 1) & 0x01000000) | ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000) | ((X << 3) & 0x00080000) | ((X >> 6) & 0x00040000) | ((X << 15) & 0x00020000) | ((X >> 4) & 0x00010000) | ((Y >> 2) & 0x00002000) | ((Y << 8) & 0x00001000) | ((Y >> 14) & 0x00000808) | ((Y >> 9) & 0x00000400) | ((Y ) & 0x00000200) | ((Y << 7) & 0x00000100) | ((Y >> 7) & 0x00000020) | ((Y >> 3) & 0x00000011) | ((Y << 2) & 0x00000004) | ((Y >> 21) & 0x00000002); } } /* * DES key schedule (56-bit, encryption) */ int des_setkey_enc( des_context *ctx, const unsigned char key[DES_KEY_SIZE] ) { des_setkey( ctx->sk, key ); return( 0 ); } /* * DES key schedule (56-bit, decryption) */ int des_setkey_dec( des_context *ctx, const unsigned char key[DES_KEY_SIZE] ) { int i; des_setkey( ctx->sk, key ); for( i = 0; i < 16; i += 2 ) { SWAP( ctx->sk[i ], ctx->sk[30 - i] ); SWAP( ctx->sk[i + 1], ctx->sk[31 - i] ); } return( 0 ); } static void des3_set2key( uint32_t esk[96], uint32_t dsk[96], const unsigned char key[DES_KEY_SIZE*2] ) { int i; des_setkey( esk, key ); des_setkey( dsk + 32, key + 8 ); for( i = 0; i < 32; i += 2 ) { dsk[i ] = esk[30 - i]; dsk[i + 1] = esk[31 - i]; esk[i + 32] = dsk[62 - i]; esk[i + 33] = dsk[63 - i]; esk[i + 64] = esk[i ]; esk[i + 65] = esk[i + 1]; dsk[i + 64] = dsk[i ]; dsk[i + 65] = dsk[i + 1]; } } /* * Triple-DES key schedule (112-bit, encryption) */ int des3_set2key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] ) { uint32_t sk[96]; des3_set2key( ctx->sk, sk, key ); zeroize( sk, sizeof( sk ) ); return( 0 ); } /* * Triple-DES key schedule (112-bit, decryption) */ int des3_set2key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] ) { uint32_t sk[96]; des3_set2key( sk, ctx->sk, key ); zeroize( sk, sizeof( sk ) ); return( 0 ); } static void des3_set3key( uint32_t esk[96], uint32_t dsk[96], const unsigned char key[24] ) { int i; des_setkey( esk, key ); des_setkey( dsk + 32, key + 8 ); des_setkey( esk + 64, key + 16 ); for( i = 0; i < 32; i += 2 ) { dsk[i ] = esk[94 - i]; dsk[i + 1] = esk[95 - i]; esk[i + 32] = dsk[62 - i]; esk[i + 33] = dsk[63 - i]; dsk[i + 64] = esk[30 - i]; dsk[i + 65] = esk[31 - i]; } } /* * Triple-DES key schedule (168-bit, encryption) */ int des3_set3key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] ) { uint32_t sk[96]; des3_set3key( ctx->sk, sk, key ); zeroize( sk, sizeof( sk ) ); return( 0 ); } /* * Triple-DES key schedule (168-bit, decryption) */ int des3_set3key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] ) { uint32_t sk[96]; des3_set3key( sk, ctx->sk, key ); zeroize( sk, sizeof( sk ) ); return( 0 ); } /* * DES-ECB block encryption/decryption */ int des_crypt_ecb( des_context *ctx, const unsigned char input[8], unsigned char output[8] ) { int i; uint32_t X, Y, T, *SK; SK = ctx->sk; GET_UINT32_BE( X, input, 0 ); GET_UINT32_BE( Y, input, 4 ); DES_IP( X, Y ); for( i = 0; i < 8; i++ ) { DES_ROUND( Y, X ); DES_ROUND( X, Y ); } DES_FP( Y, X ); PUT_UINT32_BE( Y, output, 0 ); PUT_UINT32_BE( X, output, 4 ); return( 0 ); } /* * DES-CBC buffer encryption/decryption */ int des_crypt_cbc( des_context *ctx, int mode, size_t length, unsigned char iv[8], const unsigned char *input, unsigned char *output ) { int i; unsigned char temp[8]; if( length % 8 ) return( ERR_DES_INVALID_INPUT_LENGTH ); if( mode == DES_ENCRYPT ) { while( length > 0 ) { for( i = 0; i < 8; i++ ) output[i] = (unsigned char)( input[i] ^ iv[i] ); des_crypt_ecb( ctx, output, output ); memcpy( iv, output, 8 ); input += 8; output += 8; length -= 8; } } else /* DES_DECRYPT */ { while( length > 0 ) { memcpy( temp, input, 8 ); des_crypt_ecb( ctx, input, output ); for( i = 0; i < 8; i++ ) output[i] = (unsigned char)( output[i] ^ iv[i] ); memcpy( iv, temp, 8 ); input += 8; output += 8; length -= 8; } } return( 0 ); } /* * 3DES-ECB block encryption/decryption */ int des3_crypt_ecb( des3_context *ctx, const unsigned char input[8], unsigned char output[8] ) { int i; uint32_t X, Y, T, *SK; SK = ctx->sk; GET_UINT32_BE( X, input, 0 ); GET_UINT32_BE( Y, input, 4 ); DES_IP( X, Y ); for( i = 0; i < 8; i++ ) { DES_ROUND( Y, X ); DES_ROUND( X, Y ); } for( i = 0; i < 8; i++ ) { DES_ROUND( X, Y ); DES_ROUND( Y, X ); } for( i = 0; i < 8; i++ ) { DES_ROUND( Y, X ); DES_ROUND( X, Y ); } DES_FP( Y, X ); PUT_UINT32_BE( Y, output, 0 ); PUT_UINT32_BE( X, output, 4 ); return( 0 ); } /* * 3DES-CBC buffer encryption/decryption */ int des3_crypt_cbc( des3_context *ctx, int mode, size_t length, unsigned char iv[8], const unsigned char *input, unsigned char *output ) { int i; unsigned char temp[8]; if( length % 8 ) return( ERR_DES_INVALID_INPUT_LENGTH ); if( mode == DES_ENCRYPT ) { while( length > 0 ) { for( i = 0; i < 8; i++ ) output[i] = (unsigned char)( input[i] ^ iv[i] ); des3_crypt_ecb( ctx, output, output ); memcpy( iv, output, 8 ); input += 8; output += 8; length -= 8; } } else /* DES_DECRYPT */ { while( length > 0 ) { memcpy( temp, input, 8 ); des3_crypt_ecb( ctx, input, output ); for( i = 0; i < 8; i++ ) output[i] = (unsigned char)( output[i] ^ iv[i] ); memcpy( iv, temp, 8 ); input += 8; output += 8; length -= 8; } } return( 0 ); } #endif /* !DES_ALT */ #endif /* DES_C */ /* * DES-ECB buffer encryption API */ unsigned int des_ecb_encrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey) { unsigned char *tmp; unsigned int len,i; unsigned char ch = '\0'; des_context ctx; des_setkey_enc( &ctx, pkey ); len = (nlen / 8 + (nlen % 8 ? 1: 0)) * 8; //ch = 8 - nlen % 8; for(i = 0;i < nlen;i += 8) { des_crypt_ecb( &ctx, (pdata + i), (pout + i) ); } if(len > nlen) { tmp = (unsigned char *)malloc(len); i -= 8; memcpy(tmp,pdata + i,nlen - i); memset(tmp + nlen % 8, ch, (8 - nlen % 8) % 8); des_crypt_ecb( &ctx, tmp, (pout + i)); free(tmp); } des_free( &ctx ); return len; } /* * DES-ECB buffer decryption API */ unsigned int des_ecb_decrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey) { unsigned int i; des_context ctx; if(nlen % 8) return 1; des_setkey_dec( &ctx, pkey ); for(i = 0;i < nlen;i += 8) { des_crypt_ecb(&ctx, (pdata + i), (pout + i)); } des_free( &ctx ); return 0; } /* * DES-CBC buffer encryption API */ unsigned int des_cbc_encrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey, unsigned char *piv) { des_context ctx; unsigned char iv[8] = {0}; unsigned char *pivb; if(piv == NULL) pivb = iv; else pivb = piv; des_setkey_enc( &ctx, pkey ); des_crypt_cbc( &ctx, 1, nlen, pivb, pdata, (pout)); des_free( &ctx ); return nlen; } /* * DES-CBC buffer decryption API */ unsigned int des_cbc_decrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey, unsigned char *piv) { des_context ctx; unsigned char iv[8] = {0}; unsigned char *pivb; if(piv == NULL) pivb = iv; else pivb = piv; des_setkey_dec( &ctx, pkey ); des_crypt_cbc( &ctx, 0, nlen, pivb, pdata, (pout)); des_free( &ctx ); return 0; } /* * 3DES-ECB buffer encryption API */ unsigned int des3_ecb_encrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey, unsigned int klen) { unsigned char *tmp; unsigned int len,i; unsigned char ch = '\0'; des3_context ctx3; if(klen == DES3_KEY2_SIZE)//16字節 des3_set2key_enc( &ctx3, pkey );//根據長度設置key else if(klen == DES3_KEY3_SIZE)//24字節 des3_set3key_enc( &ctx3, pkey ); len = (nlen / 8 + (nlen % 8 ? 1: 0)) * 8; //ch = 8 - nlen % 8;//可以設置補齊內容,常用0或0xFF for(i = 0;i < nlen;i += 8) { des3_crypt_ecb( &ctx3, (pdata + i), (pout + i) ); } if(len > nlen)//不足8字節補齊 { tmp = (unsigned char *)malloc(len); i -= 8; memcpy(tmp,pdata + i,nlen - i); memset(tmp + nlen % 8, ch, (8 - nlen % 8) % 8); des3_crypt_ecb( &ctx3, tmp, (pout + i)); free(tmp); } des3_free( &ctx3 ); return len; } /* * 3DES-ECB buffer decryption API */ unsigned int des3_ecb_decrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey, unsigned int klen) { unsigned int i; des3_context ctx3; if(nlen % 8) return 1; if(klen == DES3_KEY2_SIZE) des3_set2key_dec( &ctx3, pkey ); else if(klen == DES3_KEY3_SIZE) des3_set3key_dec( &ctx3, pkey ); for(i = 0;i < nlen;i += 8) { des3_crypt_ecb(&ctx3, (pdata + i), (pout + i)); } des3_free( &ctx3 ); return 0; } /* * 3DES-CBC buffer encryption API */ unsigned int des3_cbc_encrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey, unsigned int klen, unsigned char *piv) { des3_context ctx; unsigned char iv[8] = {0}; unsigned char *pivb; unsigned int len; unsigned char * tmp; if(piv == NULL) pivb = iv; else pivb = piv; if(klen == DES3_KEY2_SIZE) des3_set2key_enc( &ctx, pkey ); else if(klen == DES3_KEY3_SIZE) des3_set3key_enc( &ctx, pkey ); if(nlen % 8) { len = nlen + 8 - nlen % 8; tmp = (unsigned char *)calloc(1, len); memcpy(tmp, pdata, nlen); des3_crypt_cbc( &ctx, 1, len, pivb, tmp, (pout)); free(tmp); } else { des3_crypt_cbc( &ctx, 1, nlen, pivb, pdata, (pout)); } des3_free( &ctx ); return nlen; } /* * 3DES-CBC buffer decryption API */ unsigned int des3_cbc_decrypt(unsigned char *pout, unsigned char *pdata, unsigned int nlen, unsigned char *pkey, unsigned int klen, unsigned char *piv) { des3_context ctx; unsigned char iv[8] = {0}; unsigned char *pivb; if(nlen % 8) return 1; if(piv == NULL) pivb = iv; else pivb = piv; if(klen == DES3_KEY2_SIZE) des3_set2key_dec( &ctx, pkey ); else if(klen == DES3_KEY3_SIZE) des3_set3key_dec( &ctx, pkey ); des3_crypt_cbc( &ctx, 0, nlen, pivb, pdata, (pout)); des3_free( &ctx ); return 0; } //main函數測試 int des_test_self() { unsigned char buff[1024] = {0}; unsigned char data[1024] = {0x3F,0x12,0xE7,0xC0,0x2D,0x66,0x5A,0xB0,0xC4,0x2E,0x58,0xF1}; int ret,len,i; // len = MyStrToHex("3F12E7C02D665AB0C42E58F1", data);//不滿8字節 len = strlen((char*)data); for(i = 0;i < len;i++) { printf("%02X",data[i]); } printf("\r\n"); unsigned char key[16] = {0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF}; //DES ECB 加密 printf("DES ECB ENC::\r\n"); ret = des_ecb_encrypt(buff,data,len,key); for(i = 0;i < ret;i++) { printf("%02X",buff[i]); } printf("\r\n"); //DES ECB 解密 printf("DES ECB DEC::\r\n"); memset(data,0,sizeof(data)); des_ecb_decrypt(data,buff,ret,key); for(i = 0;i < ret;i++) { printf("%02X",data[i]); } printf("\r\n"); //DES CBC 加密 printf("DES CBC ENC::\r\n"); memset(buff,0,sizeof(buff)); des_cbc_encrypt(buff,data,ret,key,NULL); for(i = 0;i < ret;i++) { printf("%02X",buff[i]); } printf("\r\n"); //DES CBC 解密 printf("DES CBC DEC::\r\n"); memset(data,0,sizeof(data)); des_cbc_decrypt(data,buff,ret,key,NULL); for(i = 0;i < ret;i++) { printf("%02X",data[i]); } printf("\r\n"); printf("\r\n"); //3DES ECB 加密 printf("3DES ECB ENC::\r\n"); ret = des3_ecb_encrypt(buff,data,len,key,16); for(i = 0;i < ret;i++) { printf("%02X",buff[i]); } printf("\r\n"); //3DES ECB 解密 printf("3DES ECB DEC::\r\n"); memset(data,0,sizeof(data)); des3_ecb_decrypt(data,buff,ret,key,16); for(i = 0;i < ret;i++) { printf("%02X",data[i]); } printf("\r\n"); //3DES CBC 加密 printf("3DES CBC ENC::\r\n"); memset(buff,0,sizeof(buff)); des3_cbc_encrypt(buff,data,ret,key,16,NULL); for(i = 0;i < ret;i++) { printf("%02X",buff[i]); } printf("\r\n"); //3DES CBC 解密 printf("3DES CBC DEC::\r\n"); memset(data,0,sizeof(data)); des3_cbc_decrypt(data,buff,ret,key,16,NULL); for(i = 0;i < ret;i++) { printf("%02X",data[i]); } printf("\r\n"); return 0; } int main(){ des_test_self(); return 0; }
九、DES解密方法
des:
參考 https://developer.aliyun.com/article/173633
就是異或的 17 輪輪密鑰的順序顛倒一下